问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

什么是反演变换?

发布网友 发布时间:2022-05-17 09:35

我来回答

4个回答

热心网友 时间:2023-10-17 17:09

·反演变换定义:设在平面上给定了半径为r的圆O,若A′为过定点O的直线OA上一点,且有向线段OA与OA′满足OA·OA′=k(k为非零常数),则这种变换叫做关于⊙O(r)的反演变换,简称反演。称A′为A关于⊙O(r)的反演点,同样,A为A′关于⊙O(r)的反演点;圆心O称为反演中心或反演极;圆半径r称为反演半径;⊙O(r)称为反演(基)圆。k称为反演幂,1)当k=r^2(r的平方)>0时,有向线段OA与OA′同向,A与A′在反演极同侧,这种反演变换称为正幂反演,亦叫双曲线式反演变换;2)当k=-r^2<0时,有向线段OA与OA′反向,A与A′在反演极异侧,这种反演变换称为负幂反演,亦叫椭圆式反演变换。在某一反演变换中相互对应的两个图形互为反演图形或反象。
·正幂反演的性质:
1、反演中心不存在反演点。不共线的两对反演点共圆,且此圆与反演基圆正交。与反演基圆正交的圆,其反象为原圆。
2、反演变换φ把通过反演中心O的任一条直线变成自身。即通过反演中心的任何直线都是该反演变换下的不变图形。(直线→直线)
3、反演变换φ把任一条不通过反演中心O的直线变成一个通过反演中心O的一个圆,而且这个圆周在点O的切线平行于该直线。(直线→圆)
4、反演变换φ把任一个通过反演中心O的圆周变成一个不通过反演中心O的一条直线,而且这条直线平行于该圆的过点O的切线。(圆→直线)
注:性质3和4互为逆命题。
5、反演变换φ把任一个不通过反演中心O的圆周变成不能过反演中心O的圆周。(圆→圆)
由于可以把直线看成圆周,上述性质2—5可经综合为
定理一 反演变换把(广义)圆周变成(广义)圆周。这个定理常称为反演变换的保圆性。
6、任何两条直线在它们的交点A的夹角,等于它们的反演图形在相应点A′的夹角,但方向相反。
7、两个相交圆周在交点A的夹角等于它们的反演图形在相应点A′的夹角,但方向相反。
8、一条直线和一个圆周在交点A的夹角等于它们的反演图形在相应点A′的夹角,但方向相反。
上述性质6—8可经综合为
定理二 两相交(广义)圆周在交点A的夹角,等于它们的反演象(广义)圆周在相应点A′的夹角,但方向相反。定理二称为反演变换的反向保角性。
因反演变换具有保圆性和反向保角性而成为证题和作图中的重要工具。由定理一、二易得:
9、正交两圆其反象仍正交。
9、相切两圆的反象仍相切,若切点恰是反演中心,则其反象为两平行线。
负幂变换可以转化为一次正幂变换和一次关于反演极反射的积来代替。
·作已知点的反演点的方法:
给出反演极O和反演幂k>0,作点A的反演点A′。
令k=r^2,作出反演基圆⊙O(r),
1)若点A在⊙O(r)外,则过点A作圆的切线(两条),两个切点相连与OA连线交点就是点A′。
2)若点A在⊙O(r)内,则把上述过程逆过来:连结OA,过点A作直线垂直于OA,直线与⊙O(r)的交点处的切线的交点就是点A′。
3)若点A在⊙O(r)上,反演点A′就是点A自身。

热心网友 时间:2023-10-17 17:09

一般指二维反演中的点。
  
二维上反演以一个特定的反演圆为基础:圆心O为反演中心,圆半径为常数k,把点P反演为点P'就是使得OP×OP'=k^2(即k为OP和OP'的几何平均).
 
 如点P在圆外可这样作:过点P作圆的切线(两条),两个切点相连与OP连线交点就是点P'.
 
 如点P在圆内就把这一过程反过来即可:连结OP,过点P作直线垂直于OP,直线与圆的交点处的切线的交点就是点P'.
 
 如点P在圆上,反演后仍是它自身.按上述方法都可用尺规作图完成.
  
反演点和反演变换在数学和物理中有很重要的应用。
反演变换定义:设在平面上给定了半径为r的圆O,若A′为过定点O的直线OA上一点,且有向线段OA与OA′满足OA·OA′=k(k为非零常数),则这种变换叫做关于⊙O(r)的反演变换,简称反演。称A′为A关于⊙O(r)的反演点,同样,A为A′关于⊙O(r)的反演点;圆心O称为反演中心或反演极;圆半径r称为反演半径;⊙O(r)称为反演(基)圆。k称为反演幂,
1)当k=r^2(r的平方)>0时,有向线段OA与OA′同向,A与A′在反演极同侧,这种反演变换称为正幂反演,亦叫双曲线式反演变换;
2)当k=-r^2<0时,有向线段OA与OA′反向,A与A′在反演极异侧,这种反演变换称为负幂反演,亦叫椭圆式反演变换。在某一反演变换中相互对应的两个图形互为反演图形或反象。

热心网友 时间:2023-10-17 17:10

根据黄正瑾老师的书,反演是:将表达式中所有逻辑常量、逻辑符号、逻辑变量分别做0与1、+与·(或、与)、X与X非之间的互换。简单的说就是求整个表达式的非。
要注意的是“所有”这两个字,还有就是保持各个变量间原运算顺序不变。

热心网友 时间:2023-10-17 17:10

  定义:设在平面内给定一点O和常数k(k不等于零),对于平面内任意一点A,确定A′,使A′在直线OA上一点,并且有向线段OA与OA′满足OA·OA′=k,我们称这种变换是以O为的反演中心,以k为反演幂的反演变换,简称反演。称A′为A关于O(r)的互为反演点.
  当k>0时,有向线段OA与OA′同向,A与A′在反演极同侧,这种反演变换称为正幂反演,亦叫双曲线式反演变换·
  当k<0时,有向线段OA与OA′反向,A与A′在反演极异侧,这种反演变换称为负幂反演,亦叫椭圆式反演变换。
  在某一反演变换中相互对应的两个图形互为反演图形或反象。
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
罗马全面战争怎么样提高元老院评价? 半夜家中镜匾忽然碎了 镜子忽然碎掉怎么解 化能异养型微生物分类 如何判断自养微生物与异养微生物 如何得知某微生物是否为哪种氨基酸的异养型微生物。 滨州市北海振宇电子科技有限责任公司怎么样? 北京振宇科技有限公司怎么样? 上海振宇化工科技有限公司经营范围 商业医保是否值得购买? 何为时间反演对称性? 请查一下,我在延安子长市,打的接种预苗,怎么我手机上查不到了 什么是反演变换 弱相互作用下宇称不守恒中的“宇称”是什么?? 杨振宁之所以被称为科学巨人是因为什么? 如何解释“时间反演对称性”? CP不对称性 时间反演对称性的微观现象:时间反演的不变性 时间反演对称性的物理学量受时间反演变换的影响 谁能清晰的解释一下什么是反演变换 燃烧意志佐乌明哥怎么样 范冰冰拍过一部电影叫樱桃吗?说国内禁播 如果电脑有开机密码..怎么用新用户登录? 怎么在电脑登陆页面创建新用户并登陆进去? 我的电脑创建了一个新用户,但如果登陆界面是原来的用户,我怎么登陆新用户,下次开机时依旧显示老用户 合肥哪个儿科医院好 ,最近孩子,多动、易冲动、爱发脾气和注意力无法集中, 孩子太胖是不是容易性早熟 怎么用百度推广自己的网站? 名家访谈节目邀请了一个叫做张玉萍的儿科专家麽? 儿科医生提醒,有哪三种行为会阻碍孩子长高? 有关物理学理论 杨振宁的研究成果是什么?急用 反演变换的数学反演变换(inversion) 数学中的仿射和反演变换 反演变换 关于对称性:物理学 oppo手机的充电的显示电池的颜色本身是绿的现在怎么变成*了哪怕就是充到90? 描写灯笼的优美古诗词 描写灯笼的优美语段有哪些? 数学里面是否有MX这个符号?它的含义是什么? 在dreamweaver MX中的MX是什么意思。还有sn又是什么意思。 我们无惧无畏只是人言可畏这句话是什么意思 女生微信名叫mx什么意思,会不会是说她和一个男生没戏啊? 无惧无畏用英语怎么说 和女孩mx什么意思 我买了件翻领的卡其色短皮衣要怎么搭配好看?? 说一个人无所畏惧是什么意思? 卡其色皮衣怎么搭配 潮爆搭配 我有一件卡其色短皮衣,请问如何搭配? 惠普1130驱动安装需要多长时间