问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

怎么判断函数和数列是收敛或发散的

发布网友 发布时间:2022-04-22 00:31

我来回答

5个回答

热心网友 时间:2023-05-20 07:58

判断函数和数列是否收敛或者发散:

1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。

2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。

3、加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如 1/n * sin(1/n) 用1/n^2 来代替 

4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。

扩展资料:

在数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。发散级数(英语:Divergent Series)指(按柯西意义下)不收敛的级数。如级数  和  ,也就是说该级数的部分和序列没有一个有穷极限。

如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数调和级数的发散性被中世纪数学家奥里斯姆所证明。

收敛级数映射到它的和的函数是线性的,从而根据哈恩-巴拿赫定理可以推出,这个函数能扩张成可和任意部分和有界的级数的可和法,这个事实一般并不怎么有用,因为这样的扩张许多都是互不相容的,并且也由于这种算子的存在性证明诉诸于选择公理或它的等价形式,例如佐恩引理,所以它们还都是非构造的。

发散级数这一分支,作为分析学的领域,本质上关心的是明确而且自然的技巧,例如阿贝尔可和法、切萨罗可和法、波莱尔可和法以及相关对象。维纳陶伯型定理的出现标志着这一分支步入了新的阶段,它引出了傅里叶分析中巴拿赫代数与可和法间出乎意料的联系。

发散级数的求和作为数值技巧也与插值法和序列变换相关,这类技巧的例子有:帕德近似、Levin类序列变换以及与量子力学中高阶微扰论的重整化技巧相关的依序映射。

收敛数列

令{  }为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|  -A|<b恒成立,就称数列{  }收敛于A(极限为A),即数列{  }为收敛数列。

函数收敛

定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

收敛的定义方式很好的体现了数学分析的精神实质。

如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数

对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。

函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项 级数 ,因而有一确定的和s。

这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)

记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0

参考资料:百度百科-收敛 百度百科-发散

热心网友 时间:2023-05-20 07:58

收敛函数:若函数在定义域的每一点都收敛,则通常称函数是收敛的。函数在某点收敛,是指当自变量趋向这一点时,其函数值的极限就等于函数在该点的值。有界函数指的是对于定义域中的任意一个值,相应的函数值都在一个区间内变化,也就是函数值的绝对值总小于某一个固定值,那函数就是有界的。

收敛函数一定有界,但是有界函数不一定收敛,如f(x)在x=0处f(0)=2,在其他x处f(x)=1,那么f(x)在x=0处就不是收敛的,那么f(x)就不是收敛函数,但是f(x)是有界的,因为1≤f(x)≤2。

判断数列是否收敛或者发散:

1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。

2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。

3、加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如 1/n * sin(1/n) 用1/n^2 来代替 

4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。

拓展资料:

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。

函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的函数极限证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。

以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x。时的极限。

问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。

热心网友 时间:2023-05-20 07:59

判断函数是否收敛或者发散

收敛函数:若函数在定义域的每一点都收敛,则通常称函数是收敛的。函数在某点收敛,是指当自变量趋向这一点时,其函数值的极限就等于函数在该点的值。有界函数指的是对于定义域中的任意一个值,相应的函数值都在一个区间内变化,也就是函数值的绝对值总小于某一个固定值,那函数就是有界的。

收敛函数一定有界,但是有界函数不一定收敛,如f(x)在x=0处f(0)=2,在其他x处f(x)=1,那么f(x)在x=0处就不是收敛的,那么f(x)就不是收敛函数,但是f(x)是有界的,因为1≤f(x)≤2。

判断数列是否收敛或者发散

1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。

2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。

3、加减的时候,把高阶的无穷小直接舍去
如 1 + 1/n,用1来代替
乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来
如 1/n * sin(1/n) 用1/n^2 来代替 

4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。

拓展资料

收敛数列具有的性质:

1、唯一性。如果数列Xn收敛,每个收敛的数列只有一个极限。

2、有界性。定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。

3、保号性。如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。

参考资料:

百度百科——收敛性

热心网友 时间:2023-05-20 08:00

1、判断函数和数列是收敛或发散:看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察,加减的时候,把高阶的无穷小直接舍去。即如果数列项数n趋于无穷时,数列的极限==实数a,那么这个数列就是收敛的;如果找不到实数a,那么就是发散的。

2、收敛:一个无穷数列收敛就是数列项数很大时,该项的值还是一个有限值,它可被圈在一个有限长的区间。

如 1 + 1/n,用1来代替,乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来;如 1/n * sin(1/n) 用1/n^2 来代替。

拓展资料:

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。

函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的函数极限证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。

以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x。时的极限。

问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。详见附例1。

热心网友 时间:2023-05-20 08:00

看n趋向无穷大时,Xn是否趋向一个常数,即可以判断收敛还是发散。

可是有时Xn比较复杂,并不好观察,加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小。

拓展资料:

收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。

在数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。

函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

怎么判断函数和数列是收敛或发散的

2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。3、加减的时候,把高阶的无穷小直接舍去如 1...

如何判断函数的收敛和发散?

判断函数收敛或发散的方法有定义法、极限法、导数法和判别法。1、定义法:对于数列而言,如果数列的每一项都收敛到一个确定的数,那么这个数列就是收敛的。对于函数而言,如果函数的每个点的极限都存在且唯一,那么这个函数就是收敛的。2、极限法:如果函数在某一点处的极限存在,则该函数在该点处收敛...

如何判断一个函数级数是否发散呢?

以下是一些常见的判断方法:1. 直接计算:如果数列或函数序列的极限可以直接计算出来,那么就可以判断它是否发散。例如,数列 {1/n}(n从1到无穷大)的极限是0,因此它是收敛的。2. 比较测试:如果你有两个序列,你知道一个是收敛的,另一个在整个范围内都大于或等于已知收敛的序列,那么这个序列也...

判断收敛发散的方法总结

1、极限判别法:对于数列项数n趋于无穷时,若数列的极限能一直趋近于实数a,那么这个数列就是收敛的,找不到实数a的数列就是发散的。2、单调有界判别法:如果一个数列是递增的,并且有上界;或者是递减的,并且有下界,则称该数列是单调有界的,根据单调有界数列定理,单调有界数列必然收敛。3、子数列...

如何判断数列的收敛性?

收敛和发散的判断方法:1.判断单调性:如果函数单调递增或者单调递减,并且无界,则函数发散。如果函数单调递增或者单调递减,并且有界,则函数收敛。2.判断极限:如果函数的极限存在且有限,则函数收敛。如果函数的极限不存在或者是无穷大,则函数发散。3.判断级数:如果级数的和有限,则函数收敛。如果级数的...

函数收敛和发散怎么判断

函数的收敛和发散可以通过极限定义、数列收敛准则、单调性与有界性、导数与微分等方法判断。1.极限定义:根据函数的极限定义,可以通过求出函数在某一点或区间的极限值来判断函数的收敛和发散。如果函数在该点或区间内的极限存在且有限,则函数是收敛的。如果函数在该点或区间内的极限不存在或趋于无穷大,...

收敛和发散判断口诀

1、通项趋于无穷:如果一个数列的通项趋于正无穷或负无穷,那么这个数列发散。2、振荡发散:如果一个数列在两个数之间来回振荡,那么这个数列发散。3、无限逼近:如果一个数列的通项无限逼近某个数,但是不等于这个数,那么这个数列发散。三、级数收敛的口诀。1、比较判别法:如果一个级数的通项可以用另...

收敛数列和发散数列怎么判断

收敛数列和发散数列怎么判断如下:判断一个序列或函数的收敛性与发散性可以通过多种方法和准则进行判断。以下是几种常见的判断方法及其原理。1、数列收敛性的判断方法 1)有界性判定 如果一个数列的绝对值或者部分和序列有上下界,且这个上下界之差趋向于零,则该数列收敛。2)单调性判定 如果一个数列...

数列发散收敛怎么判断

数列发散收敛判断方法如下:1、定义法:根据数列的定义,如果一个数列的项数n无限增大时,数列的项数无限接近于一个定值,那么这个数列就是收敛的。如果当n增大到一定值后,数列的项数与这个定值的距离越来越大,这个数列就是发散的。这种方法对数列的定义和性质的理解,适用于较为直观的情况。2、极限...

如何判断一个数列是收敛还是发散?

一、1.发散与收敛对于数列和函数来说,它就只是一个极限的概念,一般来说如果它们的通项的值在变量趋于无穷大时趋于某一个确定的值时这个数列或是函数就是收敛的,所以在判断是否是收敛的就只要求它们的极限就可以了.对于证明一个数列是收敛或是发散的只要运用书上的定理就可以了。2.对于级数来说,...

如何判断数列收敛还是发散 数列有界是数列收敛的什么条件 收敛函数和发散函数 收敛与发散怎么判断 判断收敛和发散技巧 数列发散是什么意思 收敛和发散的定义 收敛数列一定是有界吗 收敛数列的定义
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
小升初啥时候发通知书河北省邢台市南和县小升初啥时候发录取通知? 办公u盘计入什么费用 u 盘进什么会计科目 常州哪些酒吧 野外遇险时的求救信号有哪些 哪些是必须要学的野外求救信号? 夜晚时选择什么求救信号比较合适 火光信号在夜晚能被发现 求救信号主要有哪些 华为nova7se支持飞鸽互联吗? ...疑神疑鬼的,他的电话一响我就觉得是三,我是不是有抑郁症了,_百度知 ... “行政管理”用英语怎么说? 什么是收敛数列?什么是发散数列?求通俗解释。 请问行政执法用英语怎么说 谢谢 什么是收敛数列和发散数列? 行政文员 用英语怎么说 “行政文员”用英语怎么说? 行政权,立法权,司法权怎么用英语说? 行政管理这个专业用英语怎么说? 天正字体怎么添加 天正中如何增加字体种类? 天正8.5字体放在sys文件夹里,cad的放在fonts里了。... cad2010,天正8 的字体问题 天正3.0的字库在哪个目录底下? 天正字体怎么装 用天正建筑打开文件总是提示缺少字体文件,现在我... t20天正如何把字体库添加进去 天正里字体库不全怎么办 字体是放到天正下面还是cad里面 天正字体怎么弄,怎么添加 天正暖通字体放在哪? 行政管理用英语怎么说? 中国官员的行政级别用英语怎么说,比如副处级别,厅... 如何判断一个数列是发散还是收敛? 数列的收敛和发散有什么区别 中翻英.急 以真诚的微笑迎接到来的每一位顾客, 还... 什么叫收敛数列?什么叫发散数列?两者是按照什么界定 市,直辖市,区,县,镇,用英语怎么说 如何判断数列收敛还是发散? 行政经理用英文怎么翻译 解释下发散数列和收敛数列 政府行政级别级中的“厅级”、“副厅级”、“局级”、“副... 什么是发散?什么是收敛? 怎样理解高数中的发散与收敛 行政管理专业用英语怎么说?比如,我的专业是行政管... 关于行政的英文专用名词?缩写词?(列举20个) 高等数学中什么是发散?什么是收敛? “国家级”、“省级”、“市级”、“县级”用英语分别怎么... 如何判断数列收敛或发散? 行政楼是领导和老师们办公的地方用英语怎么说? 如何判断一个数列是发散的还是收敛的,怎样求一个...