发布网友 发布时间:2022-04-22 00:34
共5个回答
热心网友 时间:2022-05-12 04:06
展开3全部设a=(x,y),b=(x',y').
1、向量的加法
向量加法的运算律:
交换律:a+b=b+a。
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0。
AB-AC=CB.即“共同起点,指向被减”。
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y')。
4、数乘向量
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa。
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb。
相关概念
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。
因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
热心网友 时间:2022-05-12 05:24
1、向量参数方程式
向量参数方程式是高中数学学科中一个方程式,表达式为:OP=(1-t)OA+tOB。
2、向量加减:
A(X1,Y1) B(X2,Y2),则A + B=(X1+X2,Y1+Y2),A - B=(X1-X2,Y1-Y2)。
3、数乘向量:
结合律:λ(μa) = (λμ)a;
第一分配律:(λ+μ)a=λa+μa;
第二分配律:λ(a+b)=λa+λb。
发展历史
向量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。
“向量”一词来自力学、解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。
以上内容参考:百度百科-向量
以上内容参考:百度百科-数乘向量
以上内容参考:百度百科-向量加减
以上内容参考:百度百科-向量参数方程式
热心网友 时间:2022-05-12 06:58
向量加法与减法的几何表示:平行四边形法则、三角形法则。热心网友 时间:2022-05-12 08:50
http://zhidao.baidu.com/question/354698913.html热心网友 时间:2022-05-12 13:22
向量公式: