初一奥数题谁有啊!!!
发布网友
发布时间:2022-05-18 20:29
我来回答
共5个回答
热心网友
时间:2023-10-31 13:27
a,b,c,d,e五个数,和为8,平方和为16,求e的最值。
甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
小学数学应用题综合训练(02)
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
小学数学应用题综合训练(03)
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
小学数学应用题综合训练(04)
31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
小学数学应用题综合训练(05)
41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?
48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?
49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?
50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?
小学数学应用题综合训练(06)
51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?
52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?
53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?
54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.
55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.
56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?
57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?
58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?
59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.
60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.
小学数学应用题综合训练(07)
61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?
62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?
63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?
64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.
65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?
66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?
67. A、B、C、D、E五名学生站成一横排,他们的手*拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?
68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?
69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.
70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?
小学数学应用题综合训练(08)
71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?
72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?
73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?
74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米?
75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.
76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?
77. 某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?
78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?
79. 甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?
80. 一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?
小学数学应用题综合训练(09)
81. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?
82. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?
83. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?
84. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.
85. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?
86. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.
87. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?
88. 钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?
89. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?
90. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?
小学数学应用题综合训练(10)
91. 甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄.
92. 快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两站的中点70千米.甲、乙两站相距多少千米?
93. 甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间.
94. 有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间.
95. 用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?
96. 公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?
97. 甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?
98. 一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?
99. 有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?
100. 一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?
小学数学应用题综合训练(11)
101. 小明买了1支钢笔,所用的钱比所带的总钱数的一半多0.5元;买了1支圆珠笔,所用的钱比买钢笔后余下的钱的一半少0.5元;又买了2.8元的本子,最后剩下0.8元.小明带了多少元钱?
102. 儿子今年6岁,父亲10年前的年龄等于儿子20年后的年龄.当父亲的年龄恰好是儿子年龄的2倍时是在公元哪一年?
103. 在一条长12米的电线上,黄甲虫在8:20从右端以每分钟15厘米的速度向左端爬去;8:30红甲虫和蓝甲虫从左端分别以每分钟13厘米和11厘米的速度向右端爬去,红甲虫在什么时刻恰好在蓝甲虫和黄甲虫的中间?
104. 一支*部队从驻地乘车赶往某地抗洪抢险,如果将车速比原来提高1/9,就可比预定的时间20分钟赶到;如果先按原速度行驶72千米,再将车速比原来提高1/3,就可比预定的时间提前30分钟赶到.这支*部队的行程是多少千米?
105. 一只船从甲码头到乙码头往返一次共用4小时,回来时顺水比去时每小时多行12千米.因此后2小时比前2小时多行18千米,那么甲、乙两个码头距离是几千米?
106. 甲、乙两个班的学生人数的比是5:4,如果从乙班转走9名学生,那么甲班就比乙班人数多2/3.这时乙班有多少人?
107. 甲、乙两堆煤共重78吨,从甲堆运出25%到乙堆,则乙堆与甲堆的重量比是8:5.原来各有多少吨煤?
108. 一件工作,甲单独做要20天完成,乙单独做要12天完成,如果这件工作先由甲队做若干天,再由乙队做完,两个队共用了14天,甲队做了几天?
109. 某电机厂计划生产一批电机,开始每天生产50台,生产了计划的1/5后,由于技术改造使工作效率提高60%,这样完成任务比计划提前了3天,生产这批电机的任务是多少台?
110. 两个数相除商9余4,如果被除数、除数都扩大到原来的3倍.那么被除数、除数、商、余数之和等于2583.原来的被除数和除数各是多少?
小学数学应用题综合训练(12)
111. 在一条笔直的公路上,甲、乙两地相距600米,A每小时走4千米,B每小时走5千米.上午8时,他们从甲、乙两地同时相向出发,1分钟后,他们都调头向相反的方向走,就是依次按照1,3,5,7……连续奇数分钟的时候调头走路.他们在几时几分相遇?
112. 有两个工程队完成一项工程,甲队每工作6天后休息1天,单独做需要76天完工;乙队每工作5天后休息2天,单独做需要89天完工,照这样计算,两队合作,从1998年11月29日开始动工,到1999年几月几日才能完工?
113. 一次数学竞赛,小王做对的题占题目总数的2/3,小李做错了5题,两人都做错的题数占题目总数的1/4,小王做对了几道题?
114. 有100枚硬币(1分、2分、5分),把其中2分硬币全换成等值的5分硬币,硬币总数变成79个,然后又把其中1分硬币全换成等值的5分硬币,硬币总数变成63个,那么原有2分及5分硬币共值几分?
115. 甲、乙两物体沿环形跑道相对?/ca>
参考资料:百度
热心网友
时间:2023-10-31 13:27
1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.
2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值范围.
3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.
5.解方程2|x+1|+|x-3|=6.
6.解不等式||x+3|-|x-1||>2.
7.比较下面两个数的大小:
8.x,y,z均是非负实数,且满足:
x+3y+2z=3,3x+3y+z=4,
求u=3x-2y+4z的最大值与最小值.
9.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.
10.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?
11.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.
12.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.
13.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.
14.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求
15.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.
16.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.
17.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.
18.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?
19.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).
20.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有
21.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?
22.求不定方程49x-56y+14z=35的整数解.
23.男、女各8人跳集体舞.
(1)如果男女分站两列;
(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.
问各有多少种不同情况?
24.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?
25.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.
26.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?
27.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.
28.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?
29.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?
30.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?
31.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?
32.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?
33.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.
(1)试用新合金中第一种合金的重量表示第二种合金的重量;
(2)求新合金中含第二种合金的重量范围;
(3)求新合金中含锰的重量范围.
答案:因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以
原式=-b+(a+b)-(c-b)-(a-c)=b.
3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,
|x+m|+|x-n|=x+m-x+n=m+n.
4.分别令x=1,x=-1,代入已知等式中,得
a0+a2+a4+a6=-8128.
5.②+③整理得
x=-6y, ④
④代入①得 (k-5)y=0.
当k=5时,y有无穷多解,所以原方程组有无穷多组解;当k≠5时, y=0,代入②得(1-k)x=1+k,因为x=-6y=0,所以1+k=0,所以k=-1.
故k=5或k=-1时原方程组有解.
<x≤3时,有2(x+1)-(x-3)=6,所以x=1;当x>3时,有
,所以应舍去.
7.由|x-y|=2得
x-y=2,或x-y=-2,
所以
由前一个方程组得
|2+y|+|y|=4.
当y<-2时,-(y+2)-y=4,所以 y=-3,x=-1;当-2≤y<0时,(y+1)-y=4,无解;当y≥0时,(2+y)+y=4,所以y=1,x=3.
同理,可由后一个方程组解得
所以解为
解①得x≤-3;解②得
-3<x<-2或0<x≤1;
解③得x>1.
所以原不等式解为x<-2或x>0.9.令a=99991111,则
于是
显然有a>1,所以A-B>0,即A>B.
10.由已知可解出y和z
因为y,z为非负实数,所以有
u=3x-2y+4z
11.
所以商式为x2-3x+3,余式为2x-4.
12.小柱的路线是由三条线段组成的折线(如图1-97所示).
我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短).
显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.
13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又
∠AOD+∠DOB=∠AOB=180°,
所以 ∠COE=90°.
因为 ∠COD=55°,
所以∠DOE=90°-55°=35°.
因此,∠DOE的补角为
180°-35°=145°.
14.如图1-99所示.因为BE平分∠ABC,所以
∠CBF=∠ABF,
又因为 ∠CBF=∠CFB,
所以 ∠ABF=∠CFB.
从而
AB‖CD(内错角相等,两直线平行).
由∠CBF=55°及BE平分∠ABC,所以
∠ABC=2×55°=110°. ①
由上证知AB‖CD,所以
∠EDF=∠A=70°, ②
由①,②知
BC‖AE(同侧内角互补,两直线平行).
15.如图1-100所示.EF⊥AB,CD⊥AB,所以
∠EFB=∠CDB=90°,
所以EF‖CD(同位角相等,两直线平行).所以
∠BEF=∠BCD(两直线平行,同位角相等).①又由已知 ∠CDG=∠BEF. ②
由①,② ∠BCD=∠CDG.
所以
BC‖DG(内错角相等,两直线平行).
所以
∠AGD=∠ACB(两直线平行,同位角相等).
16.在△BCD中,
∠DBC+∠C=90°(因为∠BDC=90°),①
又在△ABC中,∠B=∠C,所以
∠A+∠B+∠C=∠A+2∠C=180°,
所以
由①,②
17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以
又
S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,
所以 S△EFGD=3S△BFD.
设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以
S△CEG=S△BCEE,
从而
所以
SEFDC=3x+2x=5x,
所以
S△BFD∶SEFDC=1∶5.
18.如图1-102所示.
由已知AC‖KL,所以S△ACK=S△ACL,所以
即 KF=FL.
+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!
20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.
21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).
22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有
(α+1)(β+1)(γ+1)=75.
于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时
(α+1)(β+1)=25.
所以
故(α,β)=(0,24),或(α,β)=(4,4),即n=20·324·52
23.设凳子有x只,椅子有y只,由题意得
3x+4y+2(x+y)=43,
即 5x+6y=43.
所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.
24.原方程可化为
7x-8y+2z=5.
令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是
而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是
把t的表达式代到x,y的表达式中,得到原方程的全部整数解是
25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有
8×7×6×5×4×3×2×1=40320
种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.
(2)逐个考虑结对问题.
与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有
2×8×7×6×5×4×3×2×1=80640
种不同情况.
26.万位是5的有
4×3×2×1=24(个).
万位是4的有
4×3×2×1=24(个).
万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:
34215,34251,34512,34521.
所以,总共有
24+24+6+4=58
个数大于34152.
27.两车错过所走过的距离为两车长之总和,即
92+84=176(米).
设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有
解之得
解之得x=9(天),x+3=12(天).
解之得x=16(海里/小时).
经检验,x=16海里/小时为所求之原速.
30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得
解之得
故甲车间超额完成税利
乙车间超额完成税利
所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).
31.设甲乙两种商品的原单价分别为x元和y元,依题意可得
由②有
0.9x+1.2y=148.5, ③
由①得x=150-y,代入③有
0. 9(150-y)+1.2y=148. 5,
解之得y=45(元),因而,x=105(元).
32.设去年每把牙刷x元,依题意得
2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,
即
2×1.68+2×1.3+2×1.3x=5x+2.6,
即 2.4x=2×1.68,
所以 x=1.4(元).
若y为去年每支牙膏价格,则y=1.4+1=2.4(元).
33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则
y=(4-x)(400+200x)
=200(4-x)(2+x)
=200(8+2x-x2)
=-200(x2-2x+1)+200+1600
=-200(x-1)2+1800.
所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.
34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以
0.4(25+x)=0.6x,
解之得x=50分钟.于是
左边=0.4(25+50)=30(千米),
右边= 0.6×50=30(千米),
即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.
35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有
(2)当x=0时,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最大500克.
(3)新合金中,含锰重量为:
x·40%+y·10%+z·50%=400-0.3x,
而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克
楼主我的答案可能有点乱,慢慢对,祝你竞赛第1
热心网友
时间:2023-10-31 13:27
1.雪龙”号科学考察船到南极进行科学考察活动,从上海出发以最快速度19节(1节=1海里/小时)航行抵达南极需要30多天时间。该船以16节的速度从上海出发,若干天后,顺利抵达目的地。在极地工作了若干天,以12节的速度返回,从上海出发后第83天由于天气原因航行速度为2节,2天后以14节的速度继续航行4天返回上海,那么“雪龙”号在南极工作了多少天?
2。甲、乙、丙三人同时出发,其中丙骑车从B镇去A镇,而甲乙都从A镇去B镇(甲开汽车以每小时24千米的速度缓慢行进,乙以每小时4千米的速度步行),当丙与甲相遇在途中的D镇时,又骑车返回B镇,甲则调头去接乙,那么,当甲接到乙时,并以往回走DB这段路程的 ;甲接到乙后(乙乘上甲车)一每小时88千米的速度前往B镇,结果三人同时到达B镇,那么丙骑车的速度是每小时多少千米
答案:1.解:设AB距离为S,甲,丙相遇时间为T1,甲,乙为T2。后来3人同时到B的时间为T3!丙速度为X
得 (24+X)T1=S ①
(24+4)T2=(24-4)T1 ②
4(T1+T2)88+T3=S ③
X(T2+T3)=XT1 ④
由②得,T2=5/7T1 ⑤
由④得,T3=2/7T1 ⑥
把⑤和⑥代入③,得
224/7T1=S ⑦
把⑦代入①,得
X=8
2.答案及过程:解:设去时用X天,工作Y天,其中X大于30。得出方程为:
16X=12(82-X-Y)+2*2+14*4
16X=984-12X-12Y+60
28X+12Y=1044
7X+3Y=261
上面说到X必须大于30,所以经过运算得出只有X=33,Y=10和X=36,Y=3时才符合题目。将第1组结果带入方程中算得天数小于30所以解法错误,答案为第2组解。
所以工作了3天!
热心网友
时间:2023-10-31 13:28
1.一个两位数,十位数字是x,各位数字是x-1,把十位数字与各位数字对调后,所得到的两位数是什么?
2.小小的妈妈带m元钱上街买菜,她买肉用去了二分之一,买蔬菜用去了剩下的三分之一,那么她还剩多少元?
相关答案:
第一题:11X-10
第二题:M-m/2-m/2/3=1/3M
元
如下图,第100行的第5个数是几?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17........
答案是4955
由图的左边最外层1
2
4
7
11
16
得后面的数总是比前面的数大,
而且第2个比第1个大1....第3个比第4个大2....第4个比第3个大3..第5个比第第4个大4....第6个比第5个大5..........所以可以设左边最外层中第n个数为x
则x等于〔1加2加3加……加〈n—1〉〕.......所以第100行的第1个数为〔1加2加3加……加〈100—1〉〕等于4951
所以第100行第5个数为4955
一、计算1+3+5+7+…+1997+1999的值。
二、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值。
三、已知
1
2
3
---
+
---
+
---
=
0
①
x
y
z
1
6
5
---
-
---
-
---
=0
②
x
y
z
x
y
z
试求
---
+
---
+
---
的值
y
z
x
四、在1,2,3,…,1998中的每一个数的前面任意添上一个“+”或“-”那么最后计算出来的结果是奇数还是偶数?
五、某校初中一年级举行数学竞赛,参加的认识是未参加人数的3倍,如果该年级减少6人,未参加的学生增加6人,那么参加与未参加人数之比是
2:1
求参加竞赛的与未参加竞赛的认识以及初中一年级的人数
答案:一题:
原式=(1+1999)*[(1999-1)/2+1]/2
=2000*1000
/2
=1000000
二题:
2x+|4-5x|+|1-3x|+4的值恒为常数,则
4-5X≥0,1-3X≤0
所以:1/3≤X≤4/5
原式=2X+4-5X+3X-1+4=7
三题:
由②得:1/X=6/Y+5/Z代入
①得
8/Y+8/Z=0
所以:Y=-Z代入1/X=6/Y+5/Z得:
1/X=1/Y
所以:X=Y
X/Y+Y/Z+Z/X=1-1-1=-1
四题:
在1,2,3,…,1998中,共有999个奇数,999个偶数,
无论二个偶数间的加减,其结果都是偶数,所以只考虑奇数间的关系.
因为任意二个奇数间的加减,其结果都是偶数,
所以,最后都是一个奇数和一个偶数间的加减,
所以,最后计算出来的结果是奇数.
五题:
设:未参加竞赛的人数为X,则参加竞赛的人数为3X,全校总人数为4X
如果该年级减少6人,则总人数为4X-6
未参加的学生增加6人,则未参加的人数为X+6,
参加的人数为4X-6-(X+6)=3X-12
参加与未参加人数之比是2:1
所以:3X-12=2*(X+6)
解之得:X=24(人),参加竞赛的人数为3X=72人,全校总人数为4X=96人
热心网友
时间:2023-10-31 13:29
成达杯数学竞赛初赛(二)
一、填空题:(每小题5分,共50分)
1、计算:
(1)125×888=___________;
(2) =___________。
2、把 用“<”连接起来:________________。
3、下面有两串按某种规律排列的数,请按规律填上空缺的数。
(1) ( );
(2)15,20,10,( ),5,30,( ),35。
4、有甲、乙、丙三个数,已知甲、乙;乙、丙;丙、甲两数的平均数分别为40、46、43,那么甲、乙、丙三个数的平均数是___________。
5、下边的加法竖式的申、办、奥、运四个汉字,分别代表四个不同的数字,请问:申办奥运分别为何数字时算式成立。申=______;办=______;奥=______;运=______。
6、甲班有学生48人,其中1/2是女生;乙班有学生45人,其中1/3是女生,那么两班的男生共有_______人。
7、配置3%的葡萄糖50千克,需要1%与6%的葡萄糖分别为______千克、______千克。
8、五个人都属龙,他们岁数的乘积是589225,这五个人的岁数和是__________。
9、加工一批零件,如果师傅先加工20天后,剩下的由徒弟再加工30天正好完成;如果徒弟先加工37天,剩下的由师傅再加工17天也正好完成。现在师傅、徒弟一起加工若干天后,剩下的由徒弟再加工40天正好完成。问:师傅和徒弟一起加工了_______天。
10、用两个同样长3厘米,宽2厘米,高1厘米的长方体,拼成一个大长方体,它的表面积最大是________平方厘米。(即cm2)
二、综合题:(每小题6分,共30分)
1、某商店购买小狗和小熊玩具共80只,已卖出小狗只数的1/5,小熊只数的2/3,共计30只。购进小狗和小熊的只数分别为多少只?
2、有一本书,如果第一天读35页,以后每天都比前一天多读5页,结果最后一天只读35页,就读完了;还是这本书,如果第一天读45页,以后每天都比前一天多读5页,结果最后一天只读40页也读完了。问:这本书有多少页?
3、将一个表面是红色的长方体(3×4×5),切成若干个1×1×1的小立方体,问表面中只有一面是红色的小立方体和表面中没有红色的小立方体各有多少块?
4、有红、黄、蓝、白、紫五种颜色珠子各一颗,分别放在编号为1、2、3、4、5号的五只箱内,A、B、C、D、E五人的猜想结果如下:
A:2号内装紫色珠子,3号内装*珠子。
B:2号内装蓝色珠子,4号内装红色珠子。
C:1号内装红色珠子,5号内装白色珠子。
D:3号内装蓝色珠子,4号内装白色珠子。
E:2号内装*珠子,5号内装紫色珠子。
结果每人都猜对了一种,每箱也只有一人猜对,A、B、C、D、E各猜对的珠子的颜色分别为什么颜色?
一.选择题(以下每题的四个选择中,仅有一个是正确的)
1.-7的绝对值是( )
(A)-7 (B)7 (C)- (D)
2.1999-的值等于( )
(A)-2001 (B)1997 (C)2001 (D)1999
3.下面有4个命题:
①存在并且只存在一个正整数和它的相反数相同。
②存在并且只存在一个有理数和它的相反数相同。
③存在并且只存在一个正整数和它的倒数相同。
④存在并且只存在一个有理数和它的倒数相同。
其中正确的命题是:( )
(A)①和② (B)②和③
(C)③和④ (D)④和①
4.4abc的同类项是( )
(A)4bca (B)4cab (C)acb (D)acb
5.某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( )
(A)20% (B)25% (C)80% (D)75%
6.,,,四个数中,与的差的绝对值最小的数是( )
(A) (B) (C) (D)
7.如果x=―, Y=0.5,那么X―Y―2X的值是( )
(A)0 (B) (C) (D) ―
8.ax+b=0和mx+n=0关于未知数x的同解方程,则有( )
(A)a+m>0. (B)mb≥an.
(C)mb≤an. (D)mb=an.
9.(-1)+(-1)-(-1)×(-1)÷(-1)的结果是( )
(A)-1 (B)1 (C)0 (D)2
10.下列运算中,错误的是( )
(A)2X+3X=5X (B)2X-3X=-1
(C)2X·3X=6X (D)2X÷4X=
11.已知a<0,化简,得( )
(A) 2 (B) 1 (C) 0 (D) -2
12.计算(-1) +(-1)÷|-1|的结果是( )
(A)0 (B)1 (C)-1 (D)2
13.下列式子中,正确的是( )
(A)a·a=a. (B)(x)=x.
(C)3=9. (D)3b·3c=9bc.
14.-|-3|的相反数的负倒数是( )
(A)- (B) (C)-3 (D)3
15.十月一日亲朋聚会,小明统计大家的平均年龄恰是38岁,老爷爷说,两年前的十月一日也是这些人相聚,那么两年前相聚时大家的平均年龄是( )岁。
(A)38 (B)37 (C)36 (D)35
16.若a<0,则4a+7|a|等于( )
(A) 11a (B)-11a (C) -3a (D)3a
17.若有理数x. y满足|2x-1|+(y+2)=0,则x. y的值等于( )
(A)-1 (B)1 (C)-2 (D)2
18.有理数a, b, c在数轴上对应的点如图所示:则下面式子中正确的是( )
(A)c + b > a + b. (C)ac > ab
(B)cb < ab. (D) cb > ab
19.不等式< 1的正整数解有( )个。
(A)2 (B)3 (C)4 (D)5
20.某计算机系统在同一时间只能执行一项任务,且完成该任务后才能执行下一项任务,现有U,V,W的时间分别为10秒,2分和15分,一项任务的相对等待时间为提交任务到完成该任务的时间与计算机系统执行该任务的时间之比,则下面四种执行顺序中使三项任务相对等候时间之和最小的执行是( )。
(A)U,V,W. (B)V,W,U
(C)W,U,V. (D)U,W,V
21.如图,线段AD,AB,BC和EF的长分别为1,8,3,2,5和2,记闭合折线AEBCFD的面积为S,则下面四个选择中正确的是( )
(A) S=7.5 (B) S=5.4
(C) 5.4<S<7.5 (D)4<S<5.4.
22.第一届希望杯的参赛人数是11万,第十届为148万,则第届参赛人数的平均增长率最接近的数值是( )。
(A)21.8%. (B) 33.5% (C)45% (D) 50%
23.已知 X和YI满足3X+4Y=2,X-Y<1,则( )。
(A)X= (B)Y=-
(C)X> (D) Y>-
24.下面的四句话中正确的是( )
A.正整数a和b的最大公约数大于等于a。
B.正整数a和b的最小公倍数大于等于ab。
C.正整数a和b的最大公约数小于等于a。
D.正整数a和b的公倍数大于等于ab。
25.已知a≤2,b≥-3,c≤5,且a-b+c=10,则a+b+c的值等于( )。
(A)10 (B)8 (C)6 (D)4
26.的相反数除-6的绝对值所得的结果是___。
27.用科学记数法表示:890000=____。
28.用四舍五入法,把1999.509取近似值(精确到个位),得到的近似数是__。
29.已知两个有理数-12.43和-12.45。那么,其中的大数减小数所得的差是__。
30.已知与是同类项,则=__。
31.|-|的负倒数与-|4|的倒数之和等于__。
32.近似数0,1990的有效数字是__。
33.甲、乙、丙、丁四个数之和等于-90,甲数减-4,乙数加-4,丙数乘-4,丁数除-4彼比相等,则四个数中的最大的一个数比最小的一个数大__。
34.已知式子+□=,则□中应填的数是__。
35.(÷)÷___。
36.已知角a的补角等于角a的3.5倍,则角a等于__度。
37.已知方程(1.9x-1.1)-()=0.9(3 x-1)+0.1,则解得x的值是_。
38.甲楼比丙楼高24.5米, 乙楼比丙楼高15.6米, 则乙楼比甲楼低___米.
39.如图,四个小三角形中所填四个数之和等于零,则这四个数绝对值之和等于__。
40.关于x的方程3mx+7=0和
2 x+3n=0是同解方程,那么
x-2y=1999
41.方程组 { 的解是___。
2x-y=2000
42.小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则甲地到乙地的路程是__米。
43.父亲比小明大24岁,并且1998年的年龄是小明2000年年龄的3倍,则小明1999年时的年龄是__岁。
44.已知和是同类项,则___。
45.,并且=。则
46.都是二位的正整楼,已知它们的最小公倍数是385,则 的最大值是__。
47.甲瓶食盐水浓度为8%,乙瓶食盐水浓度为12%,两瓶食盐水共重1000克,把甲、乙两瓶食盐后的浓度是10.08%,则甲瓶食盐水重___克。
48.如图所示的五角星形*可数出__个三角形。
49.已知则_。
50.已知数串1,1,2,3,5,8,13,……,从第3个数起每个数都等于它前面相邻的两个数之和,那么,数串中第1999个数被3除所得的余数是_。
参考资料:成达杯数学竞赛初赛试卷
初一奥数题``谁有?`!!要5道。。帮帮忙``今天要交的啊啊啊``!
4、若P是质数,P+5也是质数,则在P的平方加5,P的三次方加5,P的四次方加5,P的五次方加5中,请判断有多少个质数。5、若A、B均为整数,且A+9B能被5整除,试证明8A+7B也能被5整除。
初一奥数题!!!
乙自B向C用时(t-5.5),自C向A用时(t-5.5+3=t-2.5)(x+30)(t-5.5)=x(t-4)(x+30)(t-2.5)=xt 解方程组得:t=10 x=90 A、B两处的距离=xt+x(t-4)=90*10+90*(10-4)=1440千米 甲从A到C用了10分钟
急求。初一上学期数学奥数题120道!!!
1. 4X+5=9 2. 2(9-X)=0 3. 0.5X+5X=11 4. (12+9)X=5 5. 8X-5X=3 6. 1.2X×5=12 7. 18-12=6X+6 8. 100-99X=100-99 9. 15X÷5=9 10. 65÷5×X=26 11. 22+18X=40 12. 5X×9=180 13. 15X÷3+12=36 14. 20-5X+5=20 15. 50X-50=50 ...
谁帮我做一条初一的奥数题:整数x,y满足方程2xy+x+y=83,则x+y=...
4xy+2x+2y+1=167 (2x+1)(2y+1)=167 167质数 167=1*167=(-1)(-167)(一)2x+1=1;2y+1=167 x+y=83 二)2x+1=-1;2y+1=-167 x+y=-85 所以x+y=-85或83
初一奥数题,跪求各位高手帮忙解啊
设十位数为x,个位数就是13-x 原数:10x+13-x 新数:10(13-x)+x 方程:10(13-x)+x=2(10x+13-x)-4 x=4 即49
几道初一的奥数题,麻烦各位高手给出较详细的过程
(2k+2)^2-(2k)^2=8k+4 考虑8k+2,8k+6.奇数的平方被8除余1,则奇数平方减奇数平方不能得到8k+2,8k+6。偶数的平方被8除余4,则偶数平方减偶数平方不能得到8k+2,8k+6。所以只有8k,8k+4这两种形式 具体算一下有,74个(估算的,不知道准不准确^ ^)第二题不知道。第三题:1)把...
初一奥数题
1. 设x/3=y/4=z/5=q x=3q, y=4q, z=5q 3x-2y+z=18 9q-8q+5q=6q=18 q=3 x+5y-3z=3q+20q-15q=8q=24 2. 设a/2=b/3=c/5=q a=2q, b=3q, c=5 a^2+b^2+c^2=abc 4q^2+9q^2+25q^2=30q^3 38=30q 或 q=0 (舍去)q=38/30 a+b+c=10q=38...
初一的奥数题,麻烦各位高手。
因为锐角三角形ABC中,AB>BC>AC,所以∠C>∠A>∠B,因为最大角比最小角大27度,即∠C=∠B+27,∠A+∠B+∠C=180,因为∠A<∠C,所以,∠A+∠B+∠C>3∠A-27 即:3∠A-27<180 得:∠A<69,同理,因∠A>∠B,∠A+∠B+∠C<3∠A+27,得:∠A>51 所以:51<∠A<69 2 五条...
初一奥数题,难啊,急死我了,谁有办法快来帮帮我啊!答案越详细越好。
是一元一次方程说明:3a+2b=0 1 有唯一解说明;(a平方-4b)/(3a+2b)平方=0 最后结果是x=3/2
初一数学,奥数题求解,各位 跪求答案及详解过程,请高人指点!谢谢!
答:1)∠ABC=∠ACB=∠EAC/2=∠CAD,所以:AD//BC,正确;2)BD平分∠ABC,AD//BC,∠ADB=∠CBD=∠ABC/2=∠ACB/2,∠ACB=2∠ADB,正确;3)∠ADC=180-∠CAD-∠ACD= 180-(∠ACB+∠ACD)=180-[2∠ABD+(180-2∠ABD)/2]=180-2∠ABD-90+∠ABD=90-∠ABD,正确;4)∠ADB=180-...