发布网友 发布时间:2023-10-23 22:42
共1个回答
热心网友 时间:2024-06-12 02:32
钻石晶体在外力作用下会发生晶格变形。能够造成钻石晶格变形的外力包括放射性辐射、人工产生的高能粒子以及高温高压下的不均匀侧向压力。钻石晶格变形的形式有三类:点状变形、线状变形和面状变形。钻石晶体的点状变形为晶格中的一个原子在外力作用下发生位移;线状变形为晶格中的多个在同一晶体方向的原子在外力作用下发生位移;面状变形为晶格中的多个在同一晶体面上的原子在外力作用下发生位移。
根据晶格变形的程度,钻石的晶体变形分为两类:塑性变形和永久变形。钻石晶体的塑性变形在高温高压和钻石晶体应力的作用下会恢复晶格结构;当变形超过塑性变形的临界点时,这种晶格变形是永久性变形,在任何物理条件下都不可能恢复。
钻石晶体中由辐射产生的空穴属于永久点状变形,如:钻石中的GR1色心、H 色心、N—V色心以及许多其他色心都具有一个晶格空穴,均属于晶体的永久点状变形,只是空穴与周围的搀杂元素的结合形式不同而已。
许多钻石晶体中存在线状和面状变形,这些变形是在高温高压由不均匀侧向压力所产生的,晶体结构在一定的物理条件下可以部分或全部恢复,主要属于塑性变形。澳大利亚阿盖尔矿所产出的棕色钻石和粉红色钻石都是(或主要)由线状和面状塑性晶格变形产生的,天然红色钻石的颜色也部分由塑性变形引起。
图2-14 钻石塑性变形在可见光范围的吸收光谱
钻石塑性变形产生一个中心为550nm的宽吸收带,并伴随一个中心波长为390nm的弱吸收带
钻石塑性变形产生一个中心为550nm的宽吸收带,并伴随一个中心波长为390nm的吸收带。前者主要造成钻石晶体在可见光中波范围产生选择性吸收,引起紫红色调的颜色。图2-14所示为典型的钻石塑性变形产生的吸收光谱曲线。除550nm 吸收带外,曲线底部吸收强度随波长的变短而增强。塑性变形产生的吸收一般很强,使钻石主要呈现低亮度和低饱和度的棕色。当塑性变形的程度较小时,大面积均匀的塑性变形可能产生较低的吸收,因而产生粉红色。塑性变形造成的粉红色和棕色均为饱和度较低的紫红色调的颜色,粉红色钻石的亮度较高,棕色的亮度较低。
天然红色钻石均具有塑性变形,且含氮量较高,属于Ⅰa型。红色钻石同时具有聚合氮所产生的N 3色心、塑性变形产生的550nm的宽吸收带和390nm的吸收带,且都具有十分强的光谱吸收。N 3色心和390nm的吸收带吸收短波可见光,550nm 吸收带吸收中波可见光,剩余未被吸收的长波可见光呈现红色。在钻石中产生红色的N 3色心和550nm 吸收带都必须十分强,同时造成很强的无选择性光谱吸收,使红色钻石的亮度一般都较低。另一方面,在颜色空间中,高饱和度的红色具有较低的亮度,也要求N 3色心和550nm 吸收带必须十分强才有可能产生高饱和度的红色。
形成红色钻石对N 3色心和550nm 宽吸收带的要求十分苛刻,两者同时满足的概率几乎为零,因此,天然红色钻石十分罕见。一般情况下N 3色心和550nm 吸收带结合可能产生的色调为黄、橙黄、红和紫红,相应的颜色包括黄、橙黄、红和紫红和相应色调的粉红色、棕色,又以棕色占绝大多数。
当塑性变形的程度较小,且较均匀地分布在变形区域时,光谱吸收的底部可能会降低,钻石的无选择性吸收也随之降低,这会造成光吸收的减弱和亮度的提高。在相同的饱和度和相同的色调下,高亮度的紫红色调颜色呈现粉红色。钻石产生塑性变形的物理条件变化一定非常剧烈,均匀分布、程度较小的变形难以形成和维持,因而粉红色钻石十分罕见。
塑性变形造成的550nm 吸收带也是一个振动电子中心。由于钻石的塑性变形造成晶格结构变化并不是完全一样,变形程度各异,塑性变形各点所产生的零声子线和其他吸收峰的也不尽相同,所以塑性变形产生一个宽吸收带,是所有在不同波长上的零声子线和各吸收峰的总和,而不是一个典型的具有明显零声子线和吸收峰的声子吸收光谱。
当塑性变形成的棕色钻石是不含氮的Ⅱa型时,吸收光谱中不存在氮元素在可见光短波范围产生的吸收。因此,若Ⅱa型棕色钻石的晶格变形全部属于塑性变形,只要去除塑性变形,钻石的颜色就会变成无色。据此,Ⅱa型棕色钻石常通过高温高压处理成无色钻石。有关Ⅱa型棕色钻石的高温高压改色处理在下一节详述。
目前,绝大多数文献只强调钻石晶格的塑性变形对钻石颜色的贡献,而忽略了永久性线状和面状变形对钻石颜色的贡献。永久性变形所产生的光谱吸收与塑性变形所产生的光谱吸收基本一致。当一颗具有晶格变形的钻石经高温高压处理后,塑性变形可能得以恢复,永久性变形仍然存在。剩余的永久性晶格变形产生的光谱吸收曲线形状相同,吸收峰值的波长不变,只是吸收系数降低。这就是为什么许多棕色钻石经高温高压处理后仍保留一定程度的棕色。