发布网友 发布时间:2022-04-26 22:57
共1个回答
热心网友 时间:2022-06-19 13:48
聚类分析的概念主要是来自多元统计分析,例如,考虑二维坐标系上有散落的许多点,这时,需要对散点进行合理的分类,就需要聚类方面的知识。模糊聚类分析方法主要针对的是这样的问题:对于样本空间P中的元素含有多个属性,要求对其中的元素进行合理的分类。最终可以以聚类图的形式加以呈现,而聚类图可以以手式和自动生成两种方式进行,这里采用自动生成方式,亦是本文的程序实现过程中的一个关键环节。 这里所实现的基本的模糊聚类的主要过程是一些成文的方法,在此简述如下: 对于待分类的一个样本集U=,设其中的每个元素有m项指标,则可以用m维向量描述样本,即:ui=(i=1,2,...,n)。则其相应的模糊聚类按下列步骤进行:1) 标准化处理,将数据压缩至(0-1)区间上,这部分内容相对简单,介绍略。(参[1])2) 建立模糊关系:这里比较重要的环节之一,首先是根据“距离”或其它进行比较的观点及方法建立模糊相似矩阵,主要的“距离”有:Hamming 距离: d(i,j)=sum(abs(x(i,k)-x(j,k))) | k from 1 to m (| k from 1 to m表示求和式中的系数k由1增至m,下同)Euclid 距离: d(i,j)=sum((x(i,k)-x(j,k))^2) | k from 1 to m 非距离方法中,最经典的就是一个夹角余弦法: 最终进行模糊聚类分析的是要求对一个模糊等价矩阵进行聚类分析,而由相似矩阵变换到等价矩阵,由于相似矩阵已满足对称性及自反性,并不一定满足传递性,则变换过程主要进行对相似矩阵进行满足传递性的操作。使关系满足传递性的算法中,最出名的,就是Washall算法了,又称传递闭包法(它的思想在最短路的Floyd算法中亦被使用了)。 算法相当简洁明了,复杂度稍大:O(log2(n)*n^3),其实就是把一个方阵的自乘操作,只不过这里用集合操作的交和并取代了原先矩阵操作中的*和+操作,如下:(matlab代码)%--washall enclosure algorithm--%unchanged=0;while unchanged==0 unchanged=1; %--sigma:i=1:n(combine(conj(cArr(i,k),cArr(k,j)))) for i=1:cArrSize for j=1:cArrSize mergeVal=0; for k=1:cArrSize if(cArr(i,k)<=cArr(k,j)&&cArr(i,k)>mergeVal) mergeVal=cArr(i,k); elseif(cArr(i,k)>cArr(k,j)&&cArr(k,j)>mergeVal) mergeVal=cArr(k,j); end end if(mergeVal>cArr(i,j)) copyCArr(i,j)=mergeVal; unchanged=0; else copyCArr(i,j)=cArr(i,j); end end end %--copy back--% for i=1:cArrSize for j=1:cArrSize cArr(i,j)=copyCArr(i,j); end endend