如何用voc 2007 数据集训练vgg
发布网友
发布时间:2022-04-26 22:15
我来回答
共1个回答
热心网友
时间:2023-11-10 01:33
RCNN:RCNN可以看作是RegionProposal+CNN这一框架的开山之作,在imgenet/voc/mscoco上基本上所有top的方法都是这个框架,可见其影响之大。RCNN的主要缺点是重复计算,后来MSRA的kaiming组的SPPNET做了相应的加速。
Fast-RCNN:RCNN的加速版本,在我看来,这不仅仅是一个加速版本,其优点还包括:
(a) 首先,它提供了在caffe的框架下,如何定义自己的层/参数/结构的范例,这个范例的一个重要的应用是python layer的应用,我在这里支持多label的caffe,有比较好的实现吗? - 孔涛的回答也提到了。
(2) training and testing end-to-end 这一点很重要,为了达到这一点其定义了ROIPooling层,因为有了这个,使得训练效果提升不少。
热心网友
时间:2023-11-10 01:33
RCNN:RCNN可以看作是RegionProposal+CNN这一框架的开山之作,在imgenet/voc/mscoco上基本上所有top的方法都是这个框架,可见其影响之大。RCNN的主要缺点是重复计算,后来MSRA的kaiming组的SPPNET做了相应的加速。
Fast-RCNN:RCNN的加速版本,在我看来,这不仅仅是一个加速版本,其优点还包括:
(a) 首先,它提供了在caffe的框架下,如何定义自己的层/参数/结构的范例,这个范例的一个重要的应用是python layer的应用,我在这里支持多label的caffe,有比较好的实现吗? - 孔涛的回答也提到了。
(2) training and testing end-to-end 这一点很重要,为了达到这一点其定义了ROIPooling层,因为有了这个,使得训练效果提升不少。