问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

五年级有关行程问题的数学题

发布网友 发布时间:2022-04-26 22:40

我来回答

3个回答

热心网友 时间:2022-06-19 06:11

第24讲 行程问题(一)
路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:
路程=时间×速度,
时间=路程÷速度,
速度=路程÷时间。
这一讲就是通过例题加深对这三个基本数量关系的理解。
例1 一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。已知每辆车长5米,两车间隔10米。问:这个车队共有多少辆车?
分析与解:求车队有多少辆车,需要先求出车队的长度,而车队的长度等于车队115秒行的路程减去大桥的长度。由“路程=时间×速度”可求出车队115秒行的路程为4×115=460(米)。
故车队长度为460-200=260(米)。再由植树问题可得车队共有车(260-5)÷(5+10)+1=18(辆)。
例2骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。如果希望中午12点到,那么应以怎样的速度行进?
分析与解:这道题没有出发时间,没有甲、乙两地的距离,也就是说既没有时间又没有路程,似乎无法求速度。这就需要通过已知条件,求出时间和路程。
假设A,B两人同时从甲地出发到乙地,A每小时行10千米,下午1点到;B每小时行15千米,上午11点到。B到乙地时,A距乙地还有10×2=20(千米),这20千米是B从甲地到乙地这段时间B比A多行的路程。因为B比A每小时多行15-10=5(千米),所以B从甲地到乙地所用的时间是
20÷(15-10)=4(时)。
由此知,A,B是上午7点出发的,甲、乙两地的距离是
15×4=60(千米)。
要想中午12点到,即想(12-7=)5时行60千米,速度应为
60÷(12-7)=12(千米/时)。
例3 划船比赛前讨论了两个比赛方案。第一个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。这两个方案哪个好?
分析与解:路程一定时,速度越快,所用时间越短。在这两个方案中,速度不是固定的,因此不好直接比较。在第二个方案中,因为两种速度划行的时间相同,所以以3.5米/秒的速度划行的路程比以2.5米/秒的速度划行的路程长。用单线表示以2.5米/秒的速度划行的路程,用双线表示以3.5米/秒的速度划行的路程,可画出下图所示的两个方案的比较图。其中,甲段+乙段=丙段。

在甲、丙两段中,两个方案所用时间相同;在乙段,因为路程相同,且第二种方案比第一种方案速度快,所以第二种方案比第一种方案所用时间短。
综上所述,在两种方案中,第二种方案所用时间比第一种方案少,即第二种方案好。
例4 小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用3.9时。问:小明往返一趟共行了多少千米?
分析与解:因为上山和下山的路程相同,所以若能求出上山走1千米和下山走1千米一共需要的时间,则可以求出上山及下山的总路程。
因为上山、下山各走1千米共需

所以上山、下山的总路程为

在行程问题中,还有一个平均速度的概念:平均速度=总路程÷总时间。
例如,例4中上山与下山的平均速度是

例5一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?
解:设等边三角形的边长为l厘米,则蚂蚁爬行一周需要的时间为

蚂蚁爬行一周平均每分钟爬行

在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:
顺流速度=静水速度+水流速度,
逆流速度=静水速度-水流速度,
静水速度=(顺流速度+逆流速度)÷2,
水流速度=(顺流速度-逆流速度)÷2。
此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。
例6 两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。求这条河的水流速度。
解:水流速度=(顺流速度-逆流速度)÷2
=(418÷11-418÷19)÷2
=(38-22)÷2
=8(千米/时)
答:这条河的水流速度为8千米/时。

练习24
1.小燕上学时骑车,回家时步行,路上共用50分钟。若往返都步行,则全程需要70分钟。求往返都骑车需要多少时间。
2.某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了5.5时。问:他步行了多远?
3.已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒。求火车的速度和长度。
4.小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟。已知小红下山的速度是上山速度的1.5倍,如果上山用了3时50分,那么下山用了多少时间?
5.汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地。求该车的平均速度。
6.两地相距480千米,一艘轮船在其间航行,顺流需16时,逆流需20时,求水流的速度。
7.一艘轮船在河流的两个码头间航行,顺流需要6时,逆流需要8时,水流速度为2.5千米/时,求轮船在静水中的速度。
练习24
1.30分。
提示:骑车比步行单程少用70-50=20(分)。
2.15千米。
解:设他步行了x千米,则有x÷5+(60-x)÷18=5.5。
解得x=15(千米)。
3.10米/秒;200米。
解:设火车长为x米。根据火车的速度得(1000+x)÷120=(1000-x)÷80。
解得x=200(米),火车速度为(1000+200)÷120=10(米/秒)。
4.2时15分。
解:上山用了60×3+50=230(分),由230÷(30+10)=5……30,得到上山休息了5次,走了230-10×5=180(分)。因为下山的速度是上山的1.5倍,所以下山走了180÷1.5=120(分)。由120÷30=40知,下山途中休息了3次,所以下山共用120+5×3=135(分)=2时15分。
5.57.6千米/时。

6.3千米/时。
解:(480÷16-480÷20)÷2=3(千米/时)。
7.17.5千米/时。
解:设两码头之间的距离为x千米。由水流速度得

解得x=120(千米)。所以轮船在静水中的速度为120÷6-2.5=17.5(千米/时)。

第25讲 行程问题(二)
本讲重点讲相遇问题和追及问题。在这两个问题中,路程、时间、速度的关系表现为:

在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
例1甲车每小时行40千米,乙车每小时行60千米。两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。求A,B两地的距离。
分析与解:先画示意图如下:

图中C点为相遇地点。因为从C点到B点,甲车行3时,所以C,B两地的距离为40×3=120(千米)。
这120千米乙车行了120÷60=2(时),说明相遇时两车已各行驶了2时,所以A,B两地的距离是 (40+60)×2=200(千米)。
例2小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇。有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?
分析与解:因为提前9分钟相遇,说明李大爷出门时,小明已经比平时多走了两人9分钟合走的路,即多走了(60+40)×9=900(米),
所以小明比平时早出门900÷60=15(分)。
例3小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用18秒。已知火车全长342米,求火车的速度。
分析与解:

在上图中,A是小刚与火车相遇地点,B是小刚与火车离开地点。由题意知,18秒小刚从A走到B,火车头从A走到C,因为C到B正好是火车的长度,所以18秒小刚与火车共行了342米,推知小刚与火车的速度和是342÷18=19(米/秒),
从而求出火车的速度为19-2=17(米/秒)。
例4 铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。求火车的全长。
分析与解

与例3类似,只不过由相向而行的相遇问题变成了同向而行的追及问题。由上图知,37秒火车头从B走到C,拖拉机从B走到A,火车比拖拉机多行一个火车车长的路程。用米作长度单位,用秒作时间单位,求得火车车长为
速度差×追及时间
= [(56000-20000)÷3600]×37
= 370(米)。
例5如右图所示,沿着某单位围墙外面的小路形成一个边长300米的正方形,甲、乙两人分别从两个对角处沿逆时针方向同时出发。已知甲每分走90米,乙每分走70米。问:至少经过多长时间甲才能看到乙?

分析与解:当甲、乙在同一条边(包括端点)上时甲才能看到乙。甲追上乙一条边,即追上300米需
300÷(90-70)=15(分),此时甲、乙的距离是一条边长,而甲走了90×15÷300=4.5(条边),位于某条边的中点,乙位于另一条边的中点,所以甲、乙不在同一条边上,甲看不到乙。甲再走0.5条边就可以看到乙了,即甲走5条边后可以看到乙,共需

例6 猎狗追赶前方30米处的野兔。猎狗步子大,它跑4步的路程兔子要跑7步,但是兔子动作快,猎狗跑3步的时间兔子能跑4步。猎狗至少跑出多远才能追上野兔?
分析与解:这道题条件比较隐蔽,时间、速度都不明显。为了弄清兔子与猎狗的速度的关系,我们将条件都变换到猎狗跑12步的情形(想想为什么这样变换):
(1)猎狗跑12步的路程等于兔子跑21步的路程;
(2)猎狗跑12步的时间等于兔子跑16步的时间。
由此知,在猎狗跑12步的这段时间里,猎狗能跑12步,相当于兔子跑

也就是说,猎狗每跑21米,兔子跑16米,猎狗要追上兔子30米需跑21×[30÷(21-16)]=126(米)。

练习25
1.A,B两村相距2800米,小明从A村出发步行5分钟后,小军骑车从B村出发,又经过10分钟两人相遇。已知小军骑车比小明步行每分钟多行130米,小明每分钟步行多少米?
2.甲、乙两车同时从A,B两地相向而行,它们相遇时距A,B两地中心处8千米。已知甲车速度是乙车的1.2倍,求A,B两地的距离。
3.小红和小强同时从家里出发相向而行。小红每分钟走52米,小强每分钟走70米,二人在途中的A处相遇。若小红提前4分钟出发,但速度不变,小强每分钟走90米,则两人仍在A处相遇。小红和小强的家相距多远?
4.一列快车和一列慢车相向而行,快车的车长是280米,慢长的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,坐在慢车上的人看见快车驶过的时间是多少秒?
5.甲、乙二人同时从A地到B地去。甲骑车每分钟行250米,每行驶10分钟后必休息20分钟;乙不间歇地步行,每分钟行100米,结果在甲即将休息的时刻两人同时到达B地。问:A,B两地相距多远?
6.甲、乙两人从周长为1600米的正方形水池相对的两个顶点同时出发逆时针行走,两人每分钟分别行50米和46米。出发后多长时间两人第一次在同一边上行走?
7.一只猎狗正在追赶前方20米处的兔子,已知狗一跳前进3米,兔子一跳前进2.1米,狗跳3次的时间兔子跳4次。兔子跑出多远将被猎狗追上?
练习25
1.60米。
解:(2800-130×10)÷(10×2+5)=60(米)。
2.176千米。

3.2196米。
解:因为小红的速度不变,相遇地点不变,所以小红两次走的时间相同,推知小强第二次比第一次少走4分。由(70×4)÷(90-70)=14(分),
推知小强第二次走了14分,第一次走了18分,两人的家相距(52+70)×18=2196(米)。
4.8秒。
提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,
(秒)。
5.10000米。
解:出发后10分钟两人相距(250-100)×10=1500(米)。

米,需要

乙从出发共行了100分钟,所以A,B两地相距100×100=10000(米)。
6.104分。
解:甲追上乙一条边(400米)需400÷(50-46)=100(分),
此时甲走了50×100=5000(米),位于某条边的中点,再走200米到达前面的顶点还需4分,所以出发后100+4=104(分),两人第一次在同一边上行走。
7.280米。
解:狗跑3×3=9(米)的时间兔子跑2.1×4=8.4(米),狗追上兔子时兔子跑了8.4×[20÷(9-8.4)]=280(米)。

第26讲 行程问题(三)
在行程问题中,经常会碰到相遇问题、追及问题、时间路程速度的关系问题等交织在一起的综合问题,这类问题难度较大,往往需要画图帮助搞清各数量之间的关系,并把综合问题分解成几个单一问题,然后逐次求解。
例1 两条公路成十字交叉,甲从十字路口南1800米处向北直行,乙从十字路口处向东直行。甲、乙同时出发12分钟后,两人与十字路口的距离相等;出发后75分钟,两人与十字路口的距离再次相等。此时他们距十字路口多少米?
分析与解:如左下图所示,出发12分钟后,甲由A点到达B点,乙由O点到达C点,且OB=OC。如果乙改为向南走,那么这个条件相当于“两人相距1800米,12分钟相遇”的相遇问题,所以每分钟两人一共行1800÷12=150(米)。

如右上图所示,出发75分钟后,甲由A点到达E点,乙由O点到达F点,且OE=OF。如果乙改为向北走,那么这个条件相当于“两人相距1800米,75分钟后甲追上乙”的追及问题,所以每分钟两人行走的路程差是1800÷75=24(米)。
再由和差问题,可求出乙每分钟行(150-24)÷2=63(米),
出发后75分钟距十字路口63×75=4725(米)。
例2 小轿车、面包车和大客车的速度分别为60千米/时、48千米/时和42千米/时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车。问:甲、乙两地相距多远?
分析与解:如下图所示,面包车与小轿车在A点相遇,此时大客车到达B点,大客车与面包车行BA这段路程共需30分钟。

由大客车与面包车的相遇问题知BA=(48+42)×(30÷60)=45(千米);
小轿车比大客车多行BA(45千米)需要的时间,由追及问题得到45÷(60-42)=2.5(时);
在这2.5时中,小轿车与面包车共行甲、乙两地的一个单程,由相遇问题可求出甲、乙两地相距(60+48)×2.5=270(千米)。
由例1、例2看出,将较复杂的综合问题分解为若干个单一问题,可以达到化难为易的目的。
例3 小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行。每隔9分钟就有一辆公共汽车从后面超过他,每隔7分钟就遇到迎面开来的一辆公共汽车。问:该路公共汽车每隔多少分钟发一次车?
分析与解:这是一道数量关系非常隐蔽的难题,有很多种解法,但大多数解法复杂且不易理解。为了搞清各数量之间的关系,我们对题目条件做适当变形。
假设小明在路上向前行走了63分钟后,立即回头再走63分钟,回到原地。这里取63,是由于[7,9]=63。这时在前63分钟他迎面遇到63÷7=9(辆)车,后63分钟有63÷9=7(辆)车追上他,那么在两个63分钟里他共遇到朝同一方向开来的16辆车,则发车的时间间隔为

例4 甲、乙两人在长为30米的水池里沿直线来回游泳,甲的速度是1米/秒,乙的速度是0.6米/秒,他们同时分别从水池的两端出发,来回共游了11分钟,如果不计转向的时间,那么在这段时间里,他们共相遇了多少次?
分析与解:甲游一个单程需30÷1=30(秒),乙游一个单程需30÷0.6=50(秒)。甲游5个单程,乙游3个单程,各自到了不同的两端又重新开始,这个过程的时间是150秒,即2.5分钟,其间,两人相遇了5次(见下图),实折线与虚折线的交点表示相遇点。

以2.5分钟为一个周期,11分钟包含4个周期零1分钟,而在一个周期中的第1分钟内,从图中看出两人相遇2次,故一共相遇了5×4+2=22(次)。
例4用画图的方法,直观地看出了一个周期内相遇的次数,由此可见画图的重要性。
例5甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山。他们两人下山的速度都是各自上山速度的2倍。甲到山顶时乙距山顶还有400米,甲回到山脚时乙刚好下到半山腰。求从山脚到山顶的距离。
分析与解:本题的难点在于上山与下山的速度不同,如果能在不改变题意的前提下,变成上山与下山的速度相同,那么问题就可能变得容易些。
如果两人下山的速度与各自上山的速度相同,那么题中“甲回到山脚时

山顶的距离是

热心网友 时间:2022-06-19 06:12

1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?

8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.

9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

小学数学应用题综合训练(02)
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?

12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.

13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?

14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?

15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?

16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?

17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?

18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?

19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?

20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?

小学数学应用题综合训练(03)
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?

22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?

23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?

24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?

25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?

26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?

27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?

28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.

29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?

1、在中原路上铺一条地下电缆,已经铺了34 ,还剩下250米没有铺。这条电缆全长多少米

2、修一段路,第一天修了全长的1/4 ,第二天修了90米,这时还剩下150米没有修。这段路全长多少米?

3、建筑工地有一堆黄沙,用去了23 ,正好用去了60吨。这堆黄沙原来有多少吨?

4、声音在空气中3秒钟大约传1千米,光的速度每秒大约300000千米,声音的速度大约是光速的几分之几?

5、一块小麦试验田,原计划每公顷产小麦8吨,实际每公顷产小麦之几?

6、职工食堂4月份计划烧煤5吨,实际烧煤4.8吨。节约了百分之几?

7、用5000千克小麦可以磨出面粉4250千克,求小麦的出粉率。

8、小麦的出粉率是80%,要磨出面粉640千克,需要多少千克小麦?

9、六(1)班有学生50人,某天请假2人,求这天的出勤率?

10、植树节那天共植树若干棵,成活了485棵,没有成活的15棵,求这次植树的成活率。

11、王老师到体育用品商店买了5只小足球,付出100元,找回32.5元,每只小足球多少元?

12、甲乙两辆汽车同时从相距255千米的两地相对开出,甲车每小时行52千米,乙车每小时行57千米,经过几小时后两车还相距37千米?

13、师徒二人共加工208个机器零件,师傅加工的零件数比徒弟的2倍还多4个,师傅和徒弟各加工多少个零件?

14、王芳的存款数是李丽存款数的2.2倍,如果李丽再存入银行75元,两人的存款数就相等了,原来两人各存款多少元?

15、五年级买一批笔记本奖给三好学生,如果每人奖给5本,还剩3本;如果每人奖给6本,又少12本。五年级评出三好学生多少名?买了多少本笔记本?

16、山坡上有羊80只,其中白羊是黑羊的4倍,山坡上黑羊、白羊各多少只?

17、商店里卖出两筐柑橘,第一筐重26千克,第二筐重29千克,第二筐比第一筐多卖了9元钱,平均每千克柑橘多少元?(用两种方法解)

18、一块梯形麦田,面积是540平方米,高18米,上底是20米,下底是多少米?

19、甲乙两车从相距750千米的两地同时开出,相向而行,5小时相遇,甲车每小时行80千米,乙车每小时行多少千米?

20、两辆汽车同时从同地开出,行驶4.5小时后,甲车落在乙车的后面13.5千米,已知甲车每小时行35千米,乙车每小时行多少千米?

21、同学们去春游,车上已经坐了45人;还有4个小组在等下一辆车,每组9人。去春游的一共有多少人?

22、一共有150人去春游,已经走了54人,剩下的坐两辆车去,平均每辆车要坐多少人?

23、舞蹈队里有18名男生,女生人数是男生的2倍,舞蹈队里男、女生一共有多少人?

24、同学们做花,小军做了63朵,小红做的花比小军少做18朵,两人一共做了多少朵花?

25、食堂里第一次买来白菜25千克,第二次买来白菜175千克,按每千克白菜6角钱计算,食堂里买白菜一共用去多少钱?

26、小华给小刚看一本书,小华4天看了132页,小刚3天看96页,谁看得快?为什么?

27、妈妈给小明买了3件汗衫,每件汗衫23元,付给营业员100元,还应找回多少元?

28、体育用品商店原来有72只篮球,卖出60只,又购进45只,现在有多少只篮球?

29、同学们去天文台参观,女生有9人,男生去的人数是女生的3倍,一辆40座的汽车够坐么?

30、学校活动室里有24盒象棋,军旗的盒数是象棋的两倍,跳棋有12盒,跳棋比军旗少多少盒?

31. 学校买来白粉笔80盒,红粉笔20盒,用了60盒,还剩多少盒?

32. 老师有8袋乒乓球,每袋6个,借给同学15个,还剩多少个?

33. 老师拿70元去买书,买了7套故事书,每套9元,还剩多少元?

34. 制衣组有90米布,用了63米,剩下的布做了9套衣服.平均每套衣服用布多少米?

35. 食品店有80包方便面,上午卖了26包,下午卖了34包,还剩多少包?(用两种方法解答)

36、 某化肥厂一月份生产化肥310吨,二月份生产400吨,三月份生产490吨化肥,平均每月生产化肥多少吨?

37、一匹马每天吃12千克草, 照这样计算, 25匹马, 一星期可吃多少千克草?(用两种方法计算)

38、工人王师傅和徒弟做机器零件, 王师傅每小时做45个, 徒弟每小时做28个, 王师傅工作6小时, 徒弟工作8小时, 他们共做多少个机器零件?

39、工厂有煤8000千克, 原计划烧25天, 由于改进炉灶, 实际烧了32天, 平均每天比原计划节约多少千克?

1. 一个车间,原来每月用煤150吨,改进技术后,每月用煤127.5吨,节约了百分之几?

2. 一块棉花地,去年收皮棉30吨,比前年增产了5吨。这块棉花地皮棉产量增长了几成?

3. 某连锁店十一月份营业额34.5万元,比十月份增加了4.5万元。十一月份营业额十月份增加了百分之几?

4. 一件商品,由原来的96元降到了84元。降低了百分之几?

5. 一块土地,用第一台拖拉机10小时可以耕完,用第二台拖拉机耕8小时可以耕完.现在用两台拖拉机一同耕了1小时20分,耕了这块地的百分之几?

6. 六年级学生参加植树活动。一班应到42人,实到42人。二班应到45人,实到44人。求两班的出勤率。

7. 一袋小麦共磨出面粉80千克,出麸皮20千克。出粉率?

8. 一个机器厂原计划每天生产40台机器,20天完成任务,如果要16天完成,每天要完成原计划日产量的百分之几?

9. 一项工程,甲独做用15天完成,结果提前5天完成了任务,甲的工作效率提高了百分之几?

10. 甲数是80,比乙数少40,少百分之几?

11. *夏令营举行射击比赛,有50人参加,每人3发子弹,命中105发,算算这次比赛的命中率。

12. 3800千克的甜菜可以榨糖418千克,求出糖率。

13. 花生仁的出油率是42%,有1600千克花生仁,可榨油多少千克?

14. 小麦的出粉率是85%,要磨出170千克面粉,需多少千克小麦?

15. 一块小麦实验田,去年产小麦24.5吨,今年增产了二成。这块实验田今年产小麦多少吨?

16. 一块地,去年产水稻12吨,因为水灾比前年减少二成五。这块地前年产水稻多少吨?

17. 一件衣服打八五折后就可以少花61.2元。这件衣服原价多少元?

18. *买一台录像机花了2400元,已知这台录像机是打八折出售的。*少花了多少元?

19. 一桶油,用去20%,还剩32千克,这桶油原有多少千克?

20. 李强体重33千克,比去年增加10%,去年他的体重是多少千克?

21. 六年级有学生112人,五年级比六年级多25%,五年级有多少人?

22. *第一机床厂,今年生产机床891台,比去年增产10%,今年比去年增产多少台?

23. 一个工厂由于采用了新工艺,现在每件产品的成本是37.4元,比原来降低了15%,原来每件成本是多少元?

24. 一个养殖场,养鸭的只数比养鸡的只数少20%,养的鸡比鸭多1000只。这个养殖场养鸭多少只?

25. 一小区有1225户拥有电视机,电视机普及率达到98%,这个小区有多少户?

热心网友 时间:2022-06-19 06:12

甲、乙两车同时从A、B两地相向而行,在距A地60千米处第一次相遇,各自到达对方出发地后立即返回,途中又在距A地40千米处相遇。A、B两地相距多少千米?
1.
解:设两地相距x千米.
第一次相遇甲乙共走了一个行程,其中乙行了x-60千米
第二次相遇甲乙共走了两个行程,其中乙行了60+40=100千米
所以100=2×(x-60)
得x=110
答:A、B两地相距110千米.
、甲、乙两人在环形跑道上以各自不变的速度跑步,如果两人同时同地相背而行,乙跑4分钟后两人第一次相遇,甲跑一周要6分钟,乙跑一周要多少分钟?
2.
解:甲乙4分钟相遇,甲跑一周需6分钟,即甲2分钟跑的路程乙需4分钟
所以,甲6分钟跑的路程乙需12分钟.
答:乙跑一周要12分钟.
11.快车和慢车分别从甲乙两地同时开出,相向而行,经过5小时相遇,已知慢车从乙地到甲地用12.5小时.慢车到甲地停留0.5小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多长时间?

快车从甲地到乙地需要:1/(1/5-1/12.5)=25/3小时
(2+1*0.5/12.5+1*3/25)/(1/5)
=54/5=10.8小时
公式:基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
相遇问题:(直线):甲的路程+乙的路程=总路程
相遇问题:(环形):甲的路程 +乙的路程=环形周长
追及问题:追击时间=路程差÷速度差(写出其他公式)
追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间
追及问题:(环形):快的路程-慢的路程=曲线的周长
流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间
顺水速度:船速+水速 逆水速度=船速-水速
静水速度:(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
列车过桥问题:关键是确定物体所运动的路程,参照以上公式。
流水问题:流水速度+流水速度÷2 水 速:流水速度-流水速度÷2

1 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?

2、*某部通信兵在一次演习中,摩托车每时行60千米,汽车每时行40千米,汽车出发1.5时后,摩托车沿同路去追赶汽车,需要几时追上?

3、一辆小汽车和一辆摩托车,同时从甲镇开往相距396千米的乙镇,当摩托车到达乙镇时,汽车离乙镇还有44千米。已知小汽车每时行驶64千米,摩托车比小汽车每时快多少千米?

4、行完一段路程,兄用30时,比弟所用的时间少了 ,今各从路的一端同时出发相向而行5时,仍相距132千米。兄要超过全程的中点多少千米能和弟相遇?

5、两名旅行者分别从东西两镇相向而行,甲时速12千米,乙时速9千米,甲比乙提早2时出发,相遇时甲超过全过程中点18千米,两镇间相距多少千米?

6、两汽车从相距216千米的P、N两市相向而行,快车抵N市的时候慢车距P市仍有43.2千米,又用1时48分才到P市,试求两汽车从出发到相遇用了几时?

7、甲速是乙速的 倍,今两人于相距95千米的南北两镇相向而行,乙比甲早出两时,所以乙在超过全过程中点2.5千米处和甲相遇,求两人每时各行多少千米?

8、两汽车分别由A、B两城同时相向而行,甲车在超过全程中点15千米处和乙车相遇。又用 时抵B城。这时乙车又行了56.25千米始抵A城。求两汽车的时速和公路全长?

9、两人由两县同时相向而行,2时后相距80千米,又继续行1时30分还相距50千米,相遇时甲比乙共多行24千米,求两人速度?
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
华为freebuds4i切歌怎么操作_华为freebuds4i怎么切歌 华为freebuds pro切歌方法_华为freebuds pro怎么切歌 华为耳机怎么切换下一曲 欧美电影,好像是宠物有一个世界,宠物会想办法跟主人的灵魂互换占据 ...的名字,欧洲中世纪,一个王子的继母把他的灵魂和狗的灵魂互换了... 问一部外国电影的名字 剧情记得不大清楚l了 是前几年的片子 灵魂互换的... HUAWEI 华为 AGS2-W09 10.1英寸平板电脑 (香槟金、64GB+4GB、WiFi版... 诛仙3百法和千法差距大吗 微信怎么解除应用授权登录 授权应用删除方法 微信怎么解除应用授权登录授权应用删除方法 梦见我儿子从楼上摔下来好多血流出来 数学行程问题,怎么做 梦见自己小孩不小心摔了流了好多血 数学行程问题分几类来思考 梦见我抱着孩子《下楼梯》楼梯都是雪,不小心把我和孩子一块摔下去了。我没事,孩子脸上好多血 梦见自己身上有血还用水洗,水都被染红了 行程问题常见的有三种类型,分别是(),(),() 周公解梦梦见发水,水是混的啥意思 昨晚作梦梦见我在河里洗澡水好混又钓两只小渔? 梦见自己洗澡,浴池里还有男的,水还混是怎么回事 梦见一口大井有水我在洗衣服水特别混 梦见洗澡水变混了钱丢了没洗成 梦见田里洗衣服而水是混的 梦见自己在比较混的水里面把鞋子洗干净了? 梦见水是混的在里面洗后来水漫漫清了 梦见自己和另人在混水洗头是啥征兆 信息安全四大隐患是什么? 扁豆凉粉怎么做才筋道 扁豆咋样制作好吃 扁豆凉粉制作方法 梦见自己孩子从高处摔下死了,头部都是血。 初一数学行程类和工程类应用题答题技巧? 行程问题、相遇问题、追及问题的解题思路 初中有行程问题吗 小学数学行程问题类型题。 数学问题分哪几类 比如 行程问题 工程问题 利润问题等等 最好附上 相应的等量关系式 x23和r17屏幕尺寸一样吗 10204大写怎么写 10204mb是多少流量? en10204 标准相当于ASTM的什么标准,谢谢 钢材出口满足EN10204/3.1和EN10204/3.2有何不同 怎么查看win10版本号10204 铁标TB10204 如何把oracle数据库10204降为10201 Microsoft windows version 10.0.10204怎么办? EN10204 3.1标准的详细内容是什么? 四根肋骨骨折赔偿标准 tb10204-2002还有效吗 if引导的条件状语从句 主将从现 哪个是主句 哪个是从句 if引导的条件状语从句怎么样区分哪个是从句哪个是主句