发布网友 发布时间:2023-10-02 06:15
共3个回答
热心网友 时间:2024-12-01 04:59
证明根号2是无理数
如果√2是有理数,必有√2=p/q(p、q为互质的正整数)
两边平方:2=p^/q^
p^=2q^
显然p为偶数,设p=2k(k为正整数)
有:4k^=2q^,q^=2k^
显然q业为偶数,与p、q互质矛盾
∴假设不成立,√2是无理数
无理数
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
热心网友 时间:2024-12-01 04:59
证明根号2是无理数:
如果√2是有理数,必有√2=p/q(p、q为互质的正整数);两边平方:2=p^/q^;p^=2q^。
显然p为偶数,设p=2k(k为正整数);有:4k^=2q^,q^=2k^。
显然q业为偶数,与p、q互质矛盾;∴假设不成立,所以根号2是无理数。
无理数:
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
以上内容参考:百度百科--无理数
热心网友 时间:2024-12-01 04:59
假设根号2是有理数