发布网友 发布时间:2022-04-26 00:37
共1个回答
热心网友 时间:2023-10-25 08:31
汉诺塔(又称河内塔)问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。解答结果请自己运行计算,程序见尾部。面对庞大的数字(移动圆片的次数)18446744073709551615,看来,众僧们耗尽毕生精力也不可能完成金片的移动。 后来,这个传说就演变为汉诺塔游戏: 1.有三根杆子A,B,C。A杆上有若干碟子 2.每次移动一块碟子,小的只能叠在大的上面 3.把所有碟子从A杆全部移到C杆上 经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片: 如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 此外,汉诺塔问题也是程序设计中的经典递归问题。 算法思路: 1.如果只有一个金片,则把该金片从源移动到目标棒,结束。 2.如果有n个金片,则把前n-1个金片移动到辅助的棒,然后把自己移动到目标棒,最后再把前n-1个移动到目标棒. 3.单纯对于有N个金片要挪动的步数求出, 可以使用递推方法,满足递推方程f(i) = f(i - 1) * 2 + 1. Hanoi塔问题 一块板上有三根针,A,B,C。A针上套有64个大小不等的圆盘,大的在下,小的在上。如图5.4所示。要把这64个圆盘从A针移动C针上,每次只能移动一个圆盘,移动可以借助B针进行。但在任何时候,任何针上的圆盘都必须保持大盘在下,小盘在上。求移动的步骤。 本题算法分析如下,设A上有n个盘子。 如果n=1,则将圆盘从A直接移动到C。 如果n=2,则: 1.将A上的n-1(等于1)个圆盘移到B上; 2.再将A上的一个圆盘移到C上; 3.最后将B上的n-1(等于1)个圆盘移到C上。 如果n=3,则: A. 将A上的n-1(等于2,令其为n`)个圆盘移到B(借助于C),步骤如下: (1)将A上的n`-1(等于1)个圆盘移到C上。 (2)将A上的一个圆盘移到B。 (3)将C上的n`-1(等于1)个圆盘移到B。 B. 将A上的一个圆盘移到C。 C. 将B上的n-1(等于2,令其为n`)个圆盘移到C(借助A),步骤如下: (1)将B上的n`-1(等于1)个圆盘移到A。 (2)将B上的一个盘子移到C。 (3)将A上的n`-1(等于1)个圆盘移到C。 到此,完成了三个圆盘的移动过程。 从上面分析可以看出,当n大于等于2时,移动的过程可分解为三个步骤: 第一步 把A上的n-1个圆盘移到B上; 第二步 把A上的一个圆盘移到C上; 第三步 把B上的n-1个圆盘移到C上;其中第一步和第三步是类同的。 当n=3时,第一步和第三步又分解为类同的三步,即把n`-1个圆盘从一个针移到另一个针上,这里的n`=n-1。显然这是一个递归过程,热心网友 时间:2023-10-25 08:31
汉诺塔(又称河内塔)问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。解答结果请自己运行计算,程序见尾部。面对庞大的数字(移动圆片的次数)18446744073709551615,看来,众僧们耗尽毕生精力也不可能完成金片的移动。 后来,这个传说就演变为汉诺塔游戏: 1.有三根杆子A,B,C。A杆上有若干碟子 2.每次移动一块碟子,小的只能叠在大的上面 3.把所有碟子从A杆全部移到C杆上 经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片: 如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 此外,汉诺塔问题也是程序设计中的经典递归问题。 算法思路: 1.如果只有一个金片,则把该金片从源移动到目标棒,结束。 2.如果有n个金片,则把前n-1个金片移动到辅助的棒,然后把自己移动到目标棒,最后再把前n-1个移动到目标棒. 3.单纯对于有N个金片要挪动的步数求出, 可以使用递推方法,满足递推方程f(i) = f(i - 1) * 2 + 1. Hanoi塔问题 一块板上有三根针,A,B,C。A针上套有64个大小不等的圆盘,大的在下,小的在上。如图5.4所示。要把这64个圆盘从A针移动C针上,每次只能移动一个圆盘,移动可以借助B针进行。但在任何时候,任何针上的圆盘都必须保持大盘在下,小盘在上。求移动的步骤。 本题算法分析如下,设A上有n个盘子。 如果n=1,则将圆盘从A直接移动到C。 如果n=2,则: 1.将A上的n-1(等于1)个圆盘移到B上; 2.再将A上的一个圆盘移到C上; 3.最后将B上的n-1(等于1)个圆盘移到C上。 如果n=3,则: A. 将A上的n-1(等于2,令其为n`)个圆盘移到B(借助于C),步骤如下: (1)将A上的n`-1(等于1)个圆盘移到C上。 (2)将A上的一个圆盘移到B。 (3)将C上的n`-1(等于1)个圆盘移到B。 B. 将A上的一个圆盘移到C。 C. 将B上的n-1(等于2,令其为n`)个圆盘移到C(借助A),步骤如下: (1)将B上的n`-1(等于1)个圆盘移到A。 (2)将B上的一个盘子移到C。 (3)将A上的n`-1(等于1)个圆盘移到C。 到此,完成了三个圆盘的移动过程。 从上面分析可以看出,当n大于等于2时,移动的过程可分解为三个步骤: 第一步 把A上的n-1个圆盘移到B上; 第二步 把A上的一个圆盘移到C上; 第三步 把B上的n-1个圆盘移到C上;其中第一步和第三步是类同的。 当n=3时,第一步和第三步又分解为类同的三步,即把n`-1个圆盘从一个针移到另一个针上,这里的n`=n-1。显然这是一个递归过程,