对混凝土的认识和了解
发布网友
发布时间:2022-04-26 06:42
我来回答
共3个回答
热心网友
时间:2022-06-24 20:24
对目前聚丙烯纤维混凝土推广应用的认识 [2009-03-16 15:49] 5 - 摘要:聚丙烯纤维混凝土的应用,近年来在我国的工程界已经有了长足的发展。杜拉纤维在建筑工程中的推广和应用,不但进入时间早,工程实践多,而且涉及的工程类别和应用范围也广。本文结合杜拉纤维在各类工程的大量推广应用的实践,从纤维作用的实质、纤维发生作用的条件、纤维的适当掺量、考量纤维混凝土的指标以及纤维混凝土配制的便易性等方面,对目前工程界中对聚丙烯纤维混凝土普遍存在的认识问题提出商榷,提出在聚丙烯纤维混凝土的推广和应用上需要解决的一些问题。
关键词:结构 现场施工 ;1;;;;;;;;;; 纤维作用的实质1.1; 经过多年的推广,聚丙烯抗裂纤维----杜拉纤维(Durafiber)已经在全国20多个省、市、自治区的一千多个各类工程中得到了成功的大面积应用。主要用在道路、桥梁、机场、地铁、及民用建筑、工程以及预制构件、保温材料、干粉砂浆等各个方面。如高速公路收费站特殊路段;软基层路面;大型桥梁、立交桥、高架路的铺装层;桥梁修护;公路修补;建筑物的地下室底板、侧墙、挡土墙;露天及室内停车场、车道;飞机场停机坪、机库;上人屋面、天面;楼板、楼梯板;转换层大梁、超大型梁和柱、直线加速器防辐墙、油库底座、溢洪道闸墩、石化焦炭塔框架、风力发电风塔基座等大体积混凝土;高强混凝土钢管混凝土柱;薄壁结构;设备基座;游泳池、储水池、化污池;排污管道、电缆管道;网球场、篮球场;大型垃圾堆放池;核废料填埋、核废料储存容器;住宅小区道路;工业及民用建筑的内外墙抹灰;室内装修;水渠、泄洪洞等冲磨混凝土;水利堤围;地铁、轻轨地下基础;隧道;涵洞、护坡;厂房、桥梁加固和修复等。其中不乏许多重要的大型工程和具有典型意义的工程,如深圳市民中心、深圳会展中心、深圳地铁、深圳游泳跳水馆、重庆朝天门广场、重庆渝海地王广场、重庆世贸中心、重庆机场、重庆渝澳大桥、重庆黄花园大桥、重庆石板坡大桥、广州新机场、广州地铁、广州新中国大厦、广州名汇商城、广州正佳广场、京珠高速、湖北出版城、北京蓝海洋水上世界、南阳回龙蓄能电站、乌海灌渠等等,积累了大量的工程经验。自1999年防水专家将以杜拉纤维为代表的聚丙烯纤维写入《深圳建筑防水构造图集》之后、广州、北京等地依据大量的工程实践数据和专家论证,在轻板墙体工程、保温工程方面采纳了杜拉纤维规格、掺量和做法,将聚丙烯纤维的使用纳入了地方技术规程。之后继续扩大的工程实践,以及其它许多品牌工程用纤维的大量推广和应用,为我国合成纤维混凝土开拓了一个良好的发展势头。在不同类型工程和不同地区气候条件下的应用实践中,杜拉纤维都取得了成功。工程用合成纤维所起作用的本质到底是什么?如何看待合成纤维所起的作用?随着目前呈现了众多品牌工程用合成纤维的开始激烈竞争时,对此问题却引出了许多疑问。部分厂商宣传纤维作用的时候存在片面性,好像只要在混凝土/砂浆中一掺加纤维,裂缝就不复存在,违背了纤维发生作用的机理和忽视了具体工程的个性条件。合成纤维解决的主要对象是混凝土早期的原生裂缝,无限夸大合成纤维对裂缝的抑制作用是不对的。事实上,混凝土/砂浆掺加纤维,也只能是对非结构性裂缝的阻裂作用,不可能完全消灭裂缝。1.2 ;微细纤维掺加在混凝土/砂浆中,以对裂缝的阻裂作用为主要表征,实际上由于低弹模的纤维掺加在相对高弹模的混凝土中,作用的实质是最大可能地降低了混凝土的脆性,从而解决了由于混凝土先天带来的某些不足方面的问题---因脆性引起的容易开裂等,对改善混凝土/砂浆内部结构起到了重要作用。这种作用不同于一般的加筋配筋,而是一种从根本上对混凝土/砂浆自身缺陷的改善。其中包括有效增加混凝土的韧性;减少裂缝,提高抗渗能力;减少裂缝,延缓钢筋锈蚀;减少混凝土结构受到的化学侵蚀;增强抗冻融能力,减少混凝土结构遭受破坏;减少混凝土的泌水,使表面混凝土的质量得以改善;减少裂缝,提高耐磨性和抗冲击能力等等。所起的作用不是某几个强度指标能够体现的,而是多个指标的综合体现,尤其是混凝土耐久性。合成纤维混凝土成为国内理论界热衷研究的真正意义,也在于如何真正揭示、衡量纤维对混凝土作用的本质。正是由于我们在推广杜拉纤维过程中,揭示了其作用的实质,杜拉纤维的应用才由简单的外墙处理,逐渐转向应用于技术难度较高,抗裂、抗渗、耐磨、抗冲击、抗震要求高的许多结构性重要部位。较有代表性的有:埋深23m的广州地铁公园前车站主体结构C50砼刚性自防水结构;深圳市民中心地下室底板、外墙C30S8近3万m3大规模泵送砼施工;深圳擎天华庭地上48层,总高度168m,应用于在箱式转换层的KTL托梁和环梁C50砼抗裂;深圳宝安体育馆工程混凝土总量3.5万m3,掺加杜拉纤维混凝土总量为1.7万m3,用于地下室底板、梁板、预应力梁板、挡土墙、消防水池、后浇带等,分别为C30、C35和C40砼,抗渗能力提高60-80%,取得良好的工程效果;深圳TCL工业研究大厦工程,为配合预应力混凝土结构设计的需要,在悬挑梁采用添加杜拉纤维抗裂的C60混凝土,比普通C40砼提高抗拉强度50%左右;深圳少年宫少年山后花园转换层采用钢—混凝土组合结构,梁柱节点复杂,含钢量大,混凝土浇捣困难,掺加杜拉纤维保证混凝土质量。广州新中国大厦C70、C80钢管混凝土柱以及600mm厚、8000m2的地下室厚筏板抗裂。河南郑州、新乡和武汉等多所医院直线加速器防辐墙抗裂。重庆、深圳、北京、武汉等地多处游泳、跳水池的抗裂、抗渗。京珠高速、广州新机场高速等大量的公路收费站耐磨、抗冲击路段。广州、深圳地铁的地下基础结构的抗裂、抗渗工程。广州、深圳、武汉等地多处超大面积地下室复杂结构的抗裂、抗渗。重庆、甘肃、江苏、黑龙江、吉林、广东、河南、江西、湖北等地的大量桥面铺装层和桥梁应力柱、箱梁应用工程。各地大量的转换层大体积混凝土抗裂工程。湖南、新疆、江苏等地多处石化焦炭塔大体积框架抗裂工程等。内蒙、河南、湖南多处水利工程大体积混凝土和抗冲磨、抗渗混凝土的应用。成功应用的实例数不胜数,验证了合成纤维在混凝土中的作用,作为一种混凝土抗裂不可缺少的添加材料受到了工程界的欢迎。混凝土是工程中用量最多的建筑材料,也是最主要的结构材料,钢筋混凝土结构已成为世界上应用最广泛的结构形式。我国目前正进行着举世空前的大规模基础建设,但是有许多混凝土结构,包括桥梁、道路、隧道、港口、大坝、建筑物等,在建期间或建成时间不长后出现可见裂缝,影响外观,影响在侵蚀中运行结构的耐久性,还使一些结构的使用功能受到影响,暴露出较严重的耐久性问题,寿命低于设计寿命标准。只有认真解决各类混凝土结构的耐久性,才能使资源充分得到利用。尽可能延长各类建筑物的寿命,延缓因时间推移而带来的结构安全性方面的威胁,保证其正常使用,才能尽可能节约重建和修复费用。在混凝土结构中大量推广普及合成纤维混凝土,不仅可以解决当前由于建筑物向高、大、结构复杂发展带来的一些问题,也应成为解决结构耐久性的一种重要手段。2;;;;;;;;;; 纤维发生作用的条件2.1; 纤维发生作用的条件,可以从纤维外部和内部两个方面来理解。2.1.1; 外部:可从纤维在混凝土/砂浆中所处的形态以及纤维对集料的关系两个方面来理解。纤维在混凝土/砂浆中能否乱向均匀分布,是关系到纤维能否发生作用的关键。纤维作用的机理无论怎样解释,都必须保证纤维在混凝土/砂浆中呈均匀、乱向分布的状况下才能发挥作用。微裂缝在发展过程中,遭遇到纤维的阻挡,消耗了能量,使其难以进一步发展,从而阻断应力达到抗裂的作用。由于纤维在生产过程中对其表面采用不同的活性剂配伍进行处理,使纤维遇水均匀分散,再加上外力与混凝土各种集料搅拌进一步使纤维与各种集料握裹。杜拉纤维便于分散均匀,是所有使用过该产品的人员所公认的。我们一般在透明水杯的清水中放入少量纤维进行搅动,便可以直观的发现杜拉纤维呈立体悬浮状乱向分散,且长时间放置都不会有太大变化;而某些同类的产品,经搅动后可能分散,但时隔不久便会上浮为一絮状层。据反映凡是有后者情况的纤维,在混凝土/砂浆的实际配制过程中多不易均匀分散。这种观察办法和有人提出的“纤维层高稳定率”办法大同小异。[1] 由于聚丙烯纤维密度小于水以及纤维表面活性剂的作用,分散在水中的纤维受浮力及表面活化能的影响,会逐渐呈现较为明显的分层和离析的状态,将不同品牌的短纤维放置在量杯中搅拌后静置,在不同的时间段测量其悬浮状层高的办法来比较其稳定性的办法以判断纤维的分散性。纤维对集料的握裹状况,是能否起作用的另一个关键。纤维能够尽可能多的握裹集料,避免在受力时被拔出。不同的纤维制成标准不同,在显微镜下可以看到呈现不同的握裹集料的情况。如果加入纤维后的混凝土塌落度没有损失,这种纤维不是分散不好就是握裹力差,纤维的作用无从谈起。2.1.2; 纤维能够起作用,还在于纤维本身的力学性能。如抗拉强度、拉伸极限、纤维均匀度、抗酸碱腐蚀和紫外光的老化能力等。据纤维专家解释,抗拉强度和拉伸极限成一定的反比关系。这种关系要适当,并非纤维的抗拉强度特别高才能产生高的阻裂效用。纤维在受到拉力的过程中发生拉伸变形,如果比值不适当,则抗拉强度不可能达到要求。当然,由于制成的*,该数据只能尽量满足要求。聚丙烯纤维抗拉强度过大,可能会导致脆性加大。拉伸极限过大,混凝土/砂浆中的纤维在受力变形过程中又可能无法控制裂纹。据了解,杜拉纤维的拉伸极限15%左右已经接近天然纤维,需要一定的控制技术才能生产。纤维的改性也表现在这一方面。拉伸极限指标也是衡量纤维抗裂能否真正达到作用的一种指标。2.1.3 ;要真正认识每一种材料的特性和优劣,强调一种材料排斥另一种材料的做法是行不通的。材料是不断变革的,要不断认识和使用新的材料。只有充分发挥材料的复合效应,才能综合解决工程中所遇到问题。比如,具有高弹模的钢纤维和低弹模的聚丙烯混用,可在混凝土破坏过程中分别起着不同的作用。聚丙烯纤维由于其数量多及性能特点主要约束混凝土早期原生裂缝及微观裂缝,在较低拉应力情况下起作用;钢纤维根数不多但具有明显的增强,对宏观裂缝可以起到显著的阻裂作用。两种纤维可以从不同的阶段对混凝土裂缝的产生和扩展起到约束作用,提高混凝土的抗拉强度和抗弯拉强度,可以综合两种不同弹模的纤维吸收能量的优点,对混凝土内部的缺陷产生协同作用,既可以有效增强又可以有效增韧。又如,在水工混凝土的应用中掺加粉煤灰或硅粉增加抗冲耐磨强度和抗裂。黄委会实验中心所做的配比试验,在掺加20%粉煤灰和杜拉纤维0.6/0.9/1.2kg /m3掺量的情况下,抗冲磨强度分别增加6—18%。南京水科院的试验证明,聚丙烯纤维和硅粉共掺,可以更有效地提高混凝土的抗冲磨性能33-58%。[2] 我们在内蒙哈拉沁水库泄洪洞工程的实践中也证明了这一点
热心网友
时间:2022-06-24 20:25
它综合表示拌合物的稠度、流动性、可塑性、抗分层离析泌水的性能及易抹面性等。测定和表示拌合物和易性的方法和指标很多,中国主要采用截锥坍落筒测定的坍落度(毫米)及用维勃仪测定的维勃时间(秒),作为稠度的主要指标。
强度
混凝土硬化后的最重要的力学性能,是指混凝土抵抗压、拉、弯、剪等应力的能力。水灰比、水泥品种和用量、集料的品种和用量以及搅拌、成型、养护,都直接影响混凝土的强度。混凝土按标准抗压强度(以边长为150mm的立方体为标准试件,在标准养护条件下养护28天,按照标准试验方法测得的具有95%保证率的立方体抗压强度)划分的强度等级,称为标号,分为C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75、C80、C85、C90、C95、C100共19个等级。混凝土的抗拉强度仅为其抗压强度的1/10~1/20。提高混凝土抗拉、抗压强度的比值是混凝土改性的重要方面。
变形
混凝土在荷载或温湿度作用下会产生变形,主要包括弹性变形、塑性变形、收缩和温度变形等。混凝土在短期荷载作用下的弹性变形主要用弹性模量表示。在长期荷载作用下,应力不变,应变持续增加的现象为徐变,应变不变,应力持续减少的现象为松弛。由于水泥水化、水泥石的碳化和失水等原因产生的体积变形,称为收缩。
硬化混凝土的变形来自两方面:环境因素(温、湿度变化)和外加荷载因素,因此有:
1)荷载作用下的变形
弹性变形
非弹性变形
2)非荷载作用下的变形
收缩变形(干缩、自收缩)
膨胀变形(湿胀)
3)复合作用下的变形
热心网友
时间:2022-06-24 20:25
混凝土,简称为"砼(tóng)":是指由胶凝材料将集料胶结成整体的工程复合材料的统称。通常讲的混凝土一词是指用水泥作胶凝材料,砂、石作集料;与水(可含外加剂和掺合料)按一定比例配合,经搅拌而得的水泥混凝土,也称普通混凝土,它广泛应用于土木工程。
中文名
混凝土
外文名
Concrete
简称
砼(tóng)
本质
复合材料
应用于
土木工程
快速
导航
特点
发展历史
功能作用
分类
制备过程
杂志
定义
混凝土是当代最主要的土木工程材料之一。它是由胶凝材料,颗粒状集料(也称为骨料),水,以及必要时加入的外加剂和掺合料按一定比例配制,经均匀搅拌,密实成型,养护硬化而成的一种人工石材。
特点
混凝土具有原料丰富,价格低廉,生产工艺简单的特点,因而使其用量越来越大。同时混凝土还具有抗压强度高,耐久性好,强度等级范围宽等特点。这些特点使其使用范围十分广泛,不仅在各种土木工程中使用,就是造船业,机械工业,海洋的开发,地热工程等,混凝土也是重要的材料。
发展历史
考古人员发现5000年前的凌家滩先民不仅能够制造精美的玉石器,而且已开始稻作农业,饲养或捕猎猪、鹿、鸟禽等多种动物丰富饮食品种。另外在房屋建设中,他们已懂得类似钢筋混凝土的:“挖槽填烧土,木骨撑泥墙”的建筑工艺。
5000年前的凌家滩人不是只会简单的搭建屋舍,事实证明,当时的凌家滩人已懂得“挖槽填烧土,木骨撑泥墙”的建筑工艺,这和如今的钢筋混凝土非常相似。工作人员说,原始先民要用经过火烧过土作为房基槽与墙体的填充材料,在基槽内用木棍作为墙体的支撑柱,然后填埋红烧的土块,并在墙体两侧表面敷上较厚的粘泥,甚至一部分还可能用芦苇杆加固。
1900年,万国博览会上展示了钢筋混凝土在很多方面的使用,在建材领域引起了一场*。法国工程师艾纳比克1867年在巴黎博览会上看到莫尼尔用铁丝网和混凝土制作的花盆、浴盆、和水箱后,受到启发,于是设法把这种材料应用于房屋建筑上。1879年,他开始制造钢筋混凝土楼板,以后发展为整套建筑使用由钢筋箍和纵向杆加固的混凝土结构梁。仅几年后,他在巴黎建造公寓大楼时采用了经过改善迄今仍普遍使用的钢筋混凝土主柱、横梁和楼板。
1884年德国建筑公司购买了莫尼尔的专利,进行了第一批钢筋混凝土的科学实验,研究了钢筋混凝土的强度、耐火能力。钢筋与混凝土的粘结力。1887年德国工程师科伦首先发表了钢筋混凝土的计算方法;英国人威尔森申请了钢筋混凝土板专利;美国人海厄特对混凝土横梁进行了实验。1895年——1900年,法国用钢筋混凝土建成了第一批桥梁和人行道。1918年艾布拉姆发表了著名的计算混凝土强度的水灰比理论。钢筋混凝土开始成为改变这个世界景观的重要材料。[1]
混凝土可以追溯到古老的年代,其所用的胶凝材料为粘土、石灰、石膏、火山灰等。自19世纪20年代出现了波特兰水泥后,由于用它配制成的混凝土具有工程所需要的强度和耐久性,而且原料易得,造价较低,特别是能耗较低,因而用途极为广泛(见无机胶凝材料)。
20世纪初,有人发表了水灰比等学说,初步奠定了混凝土强度的理论基础。以后,相继出现了轻集料混凝土、加气混凝土及其他混凝土,各种混凝土外加剂也开始使用。60年代以来,广泛应用减水剂,并出现了高效减水剂和相应的流态混凝土;高分子材料进入混凝土材料领域,出现了聚合物混凝土;多种纤维被用于分散配筋的纤维混凝土。现代测试技术也越来越多地应用于混凝土材料科学的研究。