求微分方程的特解或通解
发布网友
发布时间:2023-10-11 19:34
我来回答
共1个回答
热心网友
时间:2024-12-15 01:23
解:∵xy'-y-√(x²+y²)=0
==>xdy-ydx-√(x²+y²)dx=0
==>(xdy-ydx)/x²-√(1+(y/x)²)dx/x=0 (等式两端同除x²)
==>d(y/x)-√(1+(y/x)²)dx/x=0
==>d(y/x)/√(1+(y/x)²)-dx/x=0
==>∫d(y/x)/√(1+(y/x)²)-∫dx/x=0
==>ln│y/x+√(1+(y/x)²)│-ln│x│=ln│C│ (C是常数)
==>[y/x+√(1+(y/x)²)]/x=C
==>y+√(x²+y²)=Cx²
∴原方程的通解是y+√(x²+y²)=Cx²。