高数极限怎么求?
发布网友
发布时间:2023-10-13 21:28
我来回答
共1个回答
热心网友
时间:2024-12-11 16:56
1:极限部分分子有理化为:
极限部分=[(1+x^2)-1]/[x^2*(√(1+x^2)+1]=1/[√(1+x^2)+1]
再取极限=1/2.
2:同理,分子有理化为:
极限部分=[(2-x)-x]/[(1-x)*√(2-x)+√x]
=2/[√(2-x)+√x]
再取极限=2/(1+1)=1.
3:取t=1/x,则x=1/t,t趋近于0,代入得到:
极限部分化简=[√(t^2+t+1)+2t]/(2+t)
再取极限=1/2.