如何证明偏导数存在
发布网友
发布时间:2022-04-24 23:53
我来回答
共1个回答
热心网友
时间:2023-10-15 05:09
这类问题一般都是证明在某点处偏导数存在,注意这时切记不能使用求导公式,以一元函数为例,这是因为用求导公式计算出来的导函数f'(x)往往含有间断点,在间断点x0处f'(x)无意义,但这不意味着f'(x0)一定不存在,例如f(x)=(x^2)sin(1/x) x≠0
=0 x=0
可以验证在可去间断点x=0处,导函数f'(x)无意义,但f'(0)=0存在。
正确方法是用偏导数的定义来验证,偏导数是通过极限来定义的,按定义写出某点(x0,y0)处偏导数的极限表达式(以对x的偏导数为例)lim[f(x,y0)-f(x0,y0)]/(x-x0)(x趋于x0),然后用极限的相关知识来考察这个极限是否存在,这极限是否存在和该点处偏导数是否存在是一致的,因此证明偏导数存在的任务就转化为证明极限存在,这可以通过以下两种途径解:1,根据极限运算法则求出该极限,只要能求出极限的具体值,就等于证明了极限存在,而不用再费事去证明了;2,如果极限不容易求出,可以考虑用极限存在的准则去证明(例如夹*准则)极限存在。(如果证明偏导数不存在则用极限的相关理论证明该极限不存在即可)
多说一点,在确定某点处偏导数存在的基础上,往往还要讨论偏导数在该点是否连续,这时才是用求导公式的时候,用求导公式计算出导函数f'x(x,y),这是一个关于x和y的二元函数,求(x0,y0)处二元函数f'x(x,y)的极限,如果这个极限存在且等于该点处的偏导数值,则偏导数连续,否则不连续。