为什么在假设检验时,原假设和备择假设如果设相反了,结果完全相反??
发布网友
发布时间:2022-04-24 20:04
我来回答
共5个回答
热心网友
时间:2023-10-09 09:31
在假设检验时原假设和备择假设如果设相反了,结果完全相反是因为统计中用的假设检验的方法,对于原假设得到的结论不是对与错两个结果,而是拒绝与接受。
因为在做假设检验的时候,都要设定一个置信水平,当实验者拒绝原假设的时候,实际上只是说有95%的把握说原假设错了,也就是说还是有可能是对的,不能逻辑上否定原假设。
比如说原假设H0是期望=2,如果拒绝H0, 那么意思是实验者有95%的把握说H0是错的,但是当实验者所谓接受H0的时候,指的并不是有95%的把握肯定期望就等于2,所以在假设检验时,原假设和备择假设如果设相反了,结果完全相反。
扩展资料:
假设检验注意事项:
1、假设检验应注意资料的可比性,保证比较组间的可比性是假设检验的前提,为了保证资料的可比性,必须要有严密的抽样设计。
2、用户要注意选用的假设检验方法的应用条件,资料性质不同,设计类型不同,样本含量大小不同,检验方法也不同。
3、结论不能绝对化。由于假设检验是根据抽得的样本资料对总体的某种特征作出判断,而样本只反映总体的部分特征,来推断总体的特征就不能有百分之百的把握,因此假设检验作出的判断有可能是错误的。
4、正确区分差别有无统计意义与有无专业上的实际意义,差别有统计意义只说明相应的总体均数有差别,不说明差别的大小。
5、用户要有严密的抽样研究设计,检验样本必须是从同质总体中随机抽取的,用户需要保证组间的均衡性和资料的可比性,可能影响结果的非处理因素在对比组间应尽可能相同或相近。
6、检验假设的推断结论为概率结论,检验水准人为规定是相对的,检验报告结论时应列出检验统计量和P值的确切范围。
7、注意是单侧检验还是双侧检验。
参考资料来源:百度百科-假设检验
参考资料来源:百度百科-原假设
参考资料来源:百度百科-备择假设
参考资料来源:百度百科-方法
热心网友
时间:2023-10-09 09:32
之所以会出现这种情况,是因为在做假设检验的时候,当实验者“拒绝”原假设的时候,实际上我们只是说“我们有95%的把握”说原假设错了,也就是说,它还是有可能是对的,换而言之,我们不能逻辑上否定原假设。
所以在做假设检验时,我们应该注意到两点:一是我们的“拒绝”和“接受”原假设,不是逻辑上的对与错;二是我们“拒绝”原假设和“接受”原假设是完全不对等的,当我们拒绝原假设的时候,我们有95%的把握;但是当我们接受原假设的时候,我们一点把握都没有。
由此可知当我们选择原假设的时候,应该选择我们有比较大的把握否定它的一面。
扩展资料
检验假设的基本思想
假设检验的基本思想是小概率反证法思想。小概率思想是指小概率事件(P<0.01或P<0.05)在一次试验中基本上不会发生。反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为假设不成立。
假设是否正确,要用从总体中抽出的样本进行检验,与此有关的理论和方法,构成假设检验的内容。
参考资料来源:百度百科-假设检验
热心网友
时间:2023-10-09 09:32
在假设检验时原假设和备择假设如果设相反了,结果完全相反是因为统计中用的假设检验的方法,对于原假设得到的结论不是“对”与“错”两个结果,而是“拒绝”与“接受”。
因为在做假设检验的时候,都要设定一个置信水平,当实验者“拒绝”原假设的时候,实际上我们只是说“我们有95%的把握”说原假设错了,也就是说,它还是有可能是对的,换而言之,我们不能逻辑上否定原假设。
再来说“接受”原假设,准确一点来说应该是“不能拒绝”原假设,比如说原假设H0是:期望=2,如果“拒绝”H0, 那么意思是实验者有95%的把握说H0是错的,但是当实验者所谓“接受”H0的时候,指的并不是有95%的把握肯定期望就等于2。
所以在假设检验时,原假设和备择假设如果设相反了,结果完全相反。
扩展资料:
假设检验的基本步骤:
1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。
H0:样本与总体或样本与样本间的差异是由抽样误差引起的;
H1:样本与总体或样本与样本间存在本质差异;
预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1。
则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。
参考资料来源:百度百科-假设检验
热心网友
时间:2023-10-09 09:33
这个问题是每个学到这一部分的学生都会感到困惑的问题。
设原假设为H0,备择假设为H1,置信水平为95%
H0与H1从逻辑上说本来是二择一的,非此即彼,对于原假设检验的结果逻辑上说只有两个,要么对的,要么错的,如果H0是对的,那么H1就必定错了,如果H0错了,那么H1就必定是对的,如此说来,随便把哪一个作为原假设应该都是一样的结果。但事实上,选择哪个作为原假设是有差别的,那么问题出在哪儿呢?
其实问题出在假设检验的结果上,统计中用的假设检验的方法,对于原假设得到的结论不是“对”与“错”两个结果,而是“拒绝”与“接受”,两者有什么差别吗?
一定要注意在做假设检验的时候,都要设定一个置信水平,当我们“拒绝”原假设的时候,实际上我们只是说“我们有95%的把握”说原假设错了,也就是说,它还是有可能是对的,换句话说,我们不能逻辑上否定原假设!
再来说“接受”原假设,这个“接受”两个字,害苦了几乎所有的学生,其实准确的说法应该是“不能拒绝”原假设,比如说原假设H0是:期望=2,如果“拒绝”H0, 那么意思是我们有95%的把握说H0是错的,但是当我们所谓“接受”H0的时候,我们并不是有95%的把握肯定期望就等于2,其实我们一点把握都没有,我们只是利用现有样本数据不能否定它是2而已,它完全可能是2.1,2.11,1.95.......等等等等。
综上我们注意到两点:一是我们的“拒绝”和“接受”原假设,不是逻辑上的对与错;二是我们“拒绝”原假设和“接受”原假设是完全不对等的,当我们拒绝原假设的时候,我们有95%的把握;但是当我们接受原假设的时候,我们一点把握都没有。由此可知当我们选择原假设的时候,应该选择我们有比较大的把握否定它的一面。
关于这个问题更精细的讨论要牵涉到置信区间的长度问题,需要画图,这里比较难弄,自己找资料看去吧。
热心网友
时间:2023-10-09 09:34
是这样的,假设检验是倾向于保护原假设的。
比如说要推广一种新药,如果原假设是该药可靠,那只有很不可靠的时候才会拒绝。但若原假设是该药不可靠,只有很可靠的时候才会拒绝。在这个具体问题中,推广新药必须要很可靠才行,所以一般会把原假设定为该药不可靠。再说仔细一些,一般取置信区间为0.05,也就是说只有当原假设前提下5%的小概率事件发生时,才会拒绝原假设。具体的判别方法你再复习一下关于置信水平的知识,会有更深的理解。希望能帮到你
为什么在假设检验时,原假设和备择假设如果设相反了,结果完全相反??
设原假设为H0,备择假设为H1,置信水平为95%H0与H1从逻辑上说本来是二择一的,非此即彼,对于原假设检验的结果逻辑上说只有两个,要么对的,要么错的,如果H0是对的,那么H1就必定错了,如果H0错了,那么H1就必定是对的,如此说来,随便把哪一个作为原假设应该都是一样的结果。但事实上,选择哪个作为原假设是有差别...
为什么在假设检验时,原假设和备择假设如果设相反了,结果完全相反??
在假设检验时原假设和备择假设如果设相反了,结果完全相反是因为统计中用的假设检验的方法,对于原假设得到的结论不是对与错两个结果,而是拒绝与接受。因为在做假设检验的时候,都要设定一个置信水平,当实验者拒绝原假设的时候,实际上只是说有95%的把握说原假设错了,也就是说还是有可能是对的,不能...
原假设和备择假设的关系
第一类错误(Type I error)是指在原假设为真的情况下,错误地拒绝了原假设。换句话说,第一类错误发生在我们错误地认为有足够的证据拒绝原假设的情况下,而实际上原假设是正确的。第一类错误的概率通常表示为α(alpha),称为显著性水平。显著性水平决定了在假设检验中拒绝原假设的临界值。在进行假设...
假设检验的原假设、备择假设、α错误和β错误
举个例子,如果统计量恰好落在临界点上,如果原假设带有等号,我们倾向于接受,因为这代表证据不足。反之,如果等号在备择假设,即使我们无法确定,也会倾向于拒绝原假设,这可能导致错误的判断,如α错误——错误地判好人有罪,即放过了真正的无辜者。另一方面,如果原假设被错误地拒绝,即使嫌疑人确实...
假设检验可能犯的两类错误
第Ⅱ类错误即当原假设H 0 非真,却错误地接受了,这种接受非真原假设的错误在统计上称为第Ⅱ类错误。这就是假设检验中的两类错误。假设检验及其两类错误是数理统计学中的名词。在进行假设检验时提出原假设和备择假设,原假设实际上是正确的,但做出的决定是拒绝原假设,此类错误称为第一类错误。原...
简述假设检验中两类错误的区别和联系
1、两类错误的区别 二者性质不同,前提条件不同,这是它们的区别。假设检验中的两类错误指α型错误和β型错误,前者又称为弃真错误,指当零假设为真时错误地拒绝了它,因此其大小等于事先设置的显著型水平,即0.05或0.01;后者又称为取伪错误,指当零假设为假时错误地接受了它。2、两类错误的...
原假设与备择假设有何区别?
1、原假设与备择假设是一对完全互斥事件,一项检验中,原假设和备择假设有且只有一项成立。2、因为原假设假定总体参数未发生变化,所以”=”总是在原假设上,尽管原假设也可能存在方向,但实际检验时只需要针对取”=”时的情形。3、由于备择假设是研究者希望通过收集证据予以支持的假设,一般情况下,...
什么是假设检验中的第二类错误?
在假设检验中第二类错误是指当原假设错误时未拒绝原假设。假设检验及其两类错误是数理统计学中的名词。在进行假设检验时提出原假设和备择假设,原假设实际上是正确的,但我们做出的决定是拒绝原假设,此类错误称为第一类错误。原假设实际上是不正确的,但是我们却做出了接受原假设的决定,此类错误称为第...
假设检验中为什么要有原假设和备择假设?
即P值。2、看P值 如果P值小于我们事先设定的显著性水平,则可以拒绝原假设,认为备择假设成立。反之,如果P值大于显著性水平,则接受原假设,没有足够的证据支持备择假设。总之,原假设和备择假设是进行假设检验时必须要设定的两个假设,通过比较观察值的概率与先验概率来决定是否拒绝原假设。
关于假设检验中,两类错误的理解
在假设检验中,两类错误是衡量检验可靠性和效能的关键指标。第一类错误衡量的是检验的可信度,即在原假设为真时错误拒绝原假设的概率。而第二类错误衡量的是检验效能,也就是在备择假设为真时错误拒绝备择假设的概率。理解第二类错误(检验效能)中的“效能”二字意味着什么?“效能”在这里指的是在备...