发布网友 发布时间:2022-04-24 20:39
共5个回答
热心网友 时间:2023-10-10 06:52
方法一:热心网友 时间:2023-10-10 06:52
n^2 = n*(n+1)-n
= 1/3*[n(n+1)(n+2) - (n-1)n(n+1)] - n
即:
1^2 = 1/3*(1*2*3-0*1*2)-1
2^2 = 1/3*(2*3*4-1*2*3)-2
3^2 - 1/3*(3*4*5-2*3*4)-3
……………………
求和即:
1/3*(1*2*3-0*1*2 + 2*3*4-1*2*3 + 3*4*5-2*3*4……)-(1+2+3+……)
= n(n+1)(n+2)/3 - n(n+1)/2
因此有:
1^2+2^2+3^2+...+n^2= n(n+1)(2n+1)/6
证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
例:
求证:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + .…… + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5
证明:
当n=1时,有:
1×2×3×4 = 24 = 2×3×4×5/5
假设命题在n=k时成立,于是:
1×2x3×4 + 2×3×4×5 + 3×4×5×6 + .…… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5
则当n=k+1时有:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4)
= 1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)
= [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4)
= (k+1)(k+2)(k+3)(k+4)*(k/5 +1)
= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5
即n=k+1时原等式仍然成立,归纳得证。
热心网友 时间:2023-10-10 06:53
简单计算一下即可,答案如图所示
热心网友 时间:2023-10-10 06:53
n^2 = n*(n+1)-n
= 1/3*[n(n+1)(n+2) - (n-1)n(n+1)] - n
1^2 = 1/3*(1*2*3-0*1*2)-1
2^2 = 1/3*(2*3*4-1*2*3)-2
3^2 - 1/3*(3*4*5-2*3*4)-3
1/3*(1*2*3-0*1*2 + 2*3*4-1*2*3 + 3*4*5-2*3*4……)-(1+2+3+……)
= n(n+1)(n+2)/3 - n(n+1)/2
因此有:1^2+2^2+3^2+...+n^2= n(n+1)(2n+1)/6
数列的函数理解:
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a,列表法;b,图像法;c,解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
热心网友 时间:2023-10-10 06:54
这个就是zeta(2),答案是π^2 /6