关于圆的切线方程怎么解?
发布网友
发布时间:2023-07-19 09:17
我来回答
共1个回答
热心网友
时间:2024-12-02 23:58
向量法
设圆上一点A为(x0,y0),则该点与圆心O的向量OA(x0-a,y0-b)
因为过该点的切线与该方向半径垂直,则有切线方向上的单位向量与向量OA的点积为0.
设直线上任意点B为(x,y)
则对于直线方向上的向量AB(x-x0,y-y0)
有向量AB与OA的点积
AB●OA=(x-x0)(x0-a)+(y0-b)(y-y0)
=(x-a+a-x0)(x0-a)+(y0-b)(y-b+b-y0)
=(x-a)(x0-a)+(y-b)(y0-b)-(x0-a)^2-(y0-b)^2=0
故有(x-a)(x0-a)+(y-b)(y0-b)=(x0-a)^2+(y0-b)^2=r^2
分析-解析法
设圆上一点A为(x0,y0),则有:(x0-a)^2+(y0-b)^2=r^2
对隐函数求导,则有:
2(x0-a)dx+2(y0-b)dy=0
dy/dx=(a-x0)/(y0-b)=k
(隐函数求导法亦可证明椭圆的切线方程,方法相同)
或直接k1=(y0-b)/(x0-a);
k*k1=-1;(k1为与切线垂直的半径斜率。)
得k=(a-x0)/(y0-b)
(以上处理是假设斜率存在,在后面讨论斜率不存在的情况)
所以切线方程可写为:y=(a-x0)/(y0-b)x+B
将点(x0,y0),可求出B=(x0-a)x0/(y0-b)+y0
所以:
y(y0-b)+(x0-a)x=(x0-a)x0+(y0-b)y0
(y0-b)(y-b+b-y0)+(x0-a)(x-a+a-x0)=0
(y0-b)(y-b)+(x0-a)(x-a)=(x0-a)^2+(y0-b)^2
(y0-b)(y-b)+(x0-a)(x-a)=R^2
当斜率不存在时,切点为与x轴平行的直线过圆心与圆的交点。
此类切点有2个,不妨设为M(a-r,b);N(a+r,b)
(y0-b)(y-b)+(x0-a)(x-a)=r^2
将2点带入上式,亦成立。
故得证。