用秦九韶推出诲伦
发布网友
发布时间:2022-04-24 05:39
我来回答
共1个回答
热心网友
时间:2023-11-01 16:14
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。
所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,Q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜所以
q=1/4[c 2a 2-(c%| 2+a 2-b 2/2) 2]
当P=1时,△ 2=q,
△=√{1/4[c 2a 2-(c 2+a 2-b 2/2) 2]}
分解因式得
1/16[(c+a) 2-b 2][b62-(c-a) 2]
=1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)
=1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c)
=S(S-b)(S-a)(S-c)
由此可得:
△=√[s(s-b)(S-a)(S-)
其中S=1/2(a+b+c)
这与海*式完全一致,所以现在有人把这一公式称为“海伦-秦九韶公式”。
热心网友
时间:2023-11-01 16:14
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。
所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,Q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜所以
q=1/4[c 2a 2-(c%| 2+a 2-b 2/2) 2]
当P=1时,△ 2=q,
△=√{1/4[c 2a 2-(c 2+a 2-b 2/2) 2]}
分解因式得
1/16[(c+a) 2-b 2][b62-(c-a) 2]
=1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)
=1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c)
=S(S-b)(S-a)(S-c)
由此可得:
△=√[s(s-b)(S-a)(S-)
其中S=1/2(a+b+c)
这与海*式完全一致,所以现在有人把这一公式称为“海伦-秦九韶公式”。
热心网友
时间:2023-11-01 16:14
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。
所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,Q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜所以
q=1/4[c 2a 2-(c%| 2+a 2-b 2/2) 2]
当P=1时,△ 2=q,
△=√{1/4[c 2a 2-(c 2+a 2-b 2/2) 2]}
分解因式得
1/16[(c+a) 2-b 2][b62-(c-a) 2]
=1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)
=1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c)
=S(S-b)(S-a)(S-c)
由此可得:
△=√[s(s-b)(S-a)(S-)
其中S=1/2(a+b+c)
这与海*式完全一致,所以现在有人把这一公式称为“海伦-秦九韶公式”。
热心网友
时间:2023-11-01 16:14
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。
所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,Q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜所以
q=1/4[c 2a 2-(c%| 2+a 2-b 2/2) 2]
当P=1时,△ 2=q,
△=√{1/4[c 2a 2-(c 2+a 2-b 2/2) 2]}
分解因式得
1/16[(c+a) 2-b 2][b62-(c-a) 2]
=1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)
=1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c)
=S(S-b)(S-a)(S-c)
由此可得:
△=√[s(s-b)(S-a)(S-)
其中S=1/2(a+b+c)
这与海*式完全一致,所以现在有人把这一公式称为“海伦-秦九韶公式”。
热心网友
时间:2023-11-01 16:14
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。
所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,Q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜所以
q=1/4[c 2a 2-(c%| 2+a 2-b 2/2) 2]
当P=1时,△ 2=q,
△=√{1/4[c 2a 2-(c 2+a 2-b 2/2) 2]}
分解因式得
1/16[(c+a) 2-b 2][b62-(c-a) 2]
=1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)
=1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c)
=S(S-b)(S-a)(S-c)
由此可得:
△=√[s(s-b)(S-a)(S-)
其中S=1/2(a+b+c)
这与海*式完全一致,所以现在有人把这一公式称为“海伦-秦九韶公式”。