f(z)=e的z次方在z=0处解析吗?复变函数问题
发布网友
发布时间:2022-04-24 07:33
我来回答
共1个回答
热心网友
时间:2022-06-17 15:54
设z=x+iy
f(z)=e^z=e^(x+iy)=e^x·e^(iy)=e^xcosy+ie^xsiny
所以u=e^xcosy,v=e^xsiny
/dx=e^xcosy
/dy=-e^xsiny
dv/dx=e^xsiny
dv/dy=e^xcosy
由/dx=dv/dy得e^xcosy=e^xcosy,可知该方程对于x,y∈R都成立
由/dy=-dv/dx得-e^xsiny=-e^xsiny,可知该方程对于x,y∈R都成立
即对于z∈C,f(z)=e^z都满足柯西黎曼条件
所以f(z)=e^z在C上处处可导,故在C上处处解析
特别地,f(z)=e^z在z=0处解析.
希望能够帮助你,有疑问欢迎追问,祝学习进步!