发布网友 发布时间:2022-04-24 08:06
共2个回答
热心网友 时间:2023-10-09 02:10
行列式= a1a2...an(a0-1/a1-2^2/a2-...-n^2/an)
a1a2...an ≠ 0
a0 1 2 ... n
1 a1 0 ... 0
2 0 a2 ... 0
... ...
n 0 0 ... an
第i列乘 -(i-1)/ai 加到第1列
即 c1 - 1/a1c2 - 2/a2c3 - ... - n/ancn+1
行列式化成上三角形式, 左上角元素是
a0-1/a1-2^2/a2-...-n^2/an
所以行列式 = a1a2...an(a0-1/a1-2^2/a2-...-n^2/an)
简介
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
热心网友 时间:2023-10-09 02:10
是不有条件 a1a2...an ≠ 0.