发布网友 发布时间:2023-06-22 09:43
共1个回答
热心网友 时间:2024-11-13 14:26
复数除法的几何意义是在复平面内,商的模等于被除数和除数的模的商,商的辐角等于被除数和除数的辐角的差。或者(a+ib)/(c+id)
=(a+ib)(c-id)/(c+id)(c-id)
=(ac+bd)/(c^2+d^2)+i(bc-ad)/(c^2+d^2)
拓展:
复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。
规定复数的乘法按照以下的法则进行:
设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其实就是把两个复数相乘,类似两个多项式相乘,展开得: ac+adi+bci+bdi2,因为i2=-1,所以结果是(ac-bd)+(bc+ad)i 。两个复数的积仍然是一个复数。
在极坐标下,复数可用模长r与幅角θ表示为(r,θ)。对于复数a+bi,r=√(a²+b²),θ=arctan(b/a)。此时,复数相乘表现为幅角相加,模长相乘。
复数除法,将分母实数化,也就是把除法换算成乘法做,在分子分母同时乘上分母的共轭所谓共轭你可以理解为加减号的变换,互为共轭的两个复数相乘是个实常数。
所谓共轭你可以理解为加减号的变换,互为共轭的两个复数相乘是个实常数.
先在分子分母上同时乘以(c-di),这是(c+di)的共轭.这样分母变为常数,做起来就易如反掌了