对偶函数怎么积?
发布网友
发布时间:2023-06-25 01:47
我来回答
共1个回答
热心网友
时间:2023-06-25 17:07
跟定积分原理一样
在[-a,a]上
若f(x)为奇函数,f(-x)=-f(x)
∫(-a,a) f(x) dx,令x=-u
=∫(a,-a) f(-u)*(-)
=∫(-a,a) f(-u)
=∫(-a,a) -f(u)
=-∫(-a,a) f(x) dx,移项得
∫(-a,a) f(x) dx=0
同理∫(-a,a) f(x) dx = 2∫(0,a) f(x) dx若f(x)为偶函数
至于二重积分
若D关于x轴和y轴都是对称的
而且被积函数是关于x或y是奇函数的话,结果一样是0
例如D为x^2+y^2=1
则x,x^3,xy,xy^3,y^5,x^3y^3等等的结果都是0
不要以为xy和x^3y^3是偶函数,奇偶性是对单一自变量有效的
计算x时把y当作常数,所以对x的积分结果是0时,再没必要对y积分了