发布网友 发布时间:2022-04-25 17:03
共3个回答
热心网友 时间:2022-06-23 02:19
傅里叶分析研究并扩展傅里叶级数和傅里叶变换的概念,并在诸多领域得到广泛应用,如信号处理、量子力学、神经科学等。
时域分析与频域分析是对信号的两个观察面。时域分析是以时间轴为坐标表示动态信号的关系;频域分析是把信号变为以频率轴为坐标表示出来。一般来说,时域的表示较为形象与直观,频域分析则更为简练,剖析问题更为深刻和方便。信号分析的趋势是从时域向频域发展。然而,它们是互相联系,缺一不可,相辅相成的。
傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。
从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
在数学领域,尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类。
扩展资料
傅里叶变换属于谐波分析。傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;
卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT))。
参考资料来源:百度百科-傅里叶分析
参考资料来源:百度百科-傅里叶变换
热心网友 时间:2022-06-23 03:37
傅里叶分析主要研究函数的傅里叶变换及其性质。又称调和分析。在经历了近2个世纪的发展之后,研究领域已从直线群、圆周群扩展到一般的抽象群。
傅里叶分析作为数学的一个分支,无论在概念或方法上都广泛地影响着数学其它分支的发展。数学中很多重要思想的形成,都与傅里叶分析的发展过程密切相关。
局部紧致阿贝尔群上的调和分析以庞特里亚金对偶性为基石,现已有完整的理论。对于一般的局部紧拓扑群,调和分析的课题是分类其酉表示。主要对象是李群与p-进群。
扩展资料
分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。
一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质。
参考资料来源:百度百科-傅里叶分析
热心网友 时间:2022-06-23 05:12
一些物理系统内,各种信号自身的频率是不变的,但是这种固有频率的特征在时间序列或时间域里是很难被特征化的(通俗点就是很难被确定)。但是傅立叶变换可以通过分离系统内不同频率正余弦信号来获取将这种系统内固有的波频或光谱。理论上讲,就是以正余弦基函数作为微分运算的特征函数,将时间上的线性微分方程的解转化为这些特征函数的线性组合,再从这个线性组合中系数非零的特征函数了解这个系统的信号组成。