发布网友 发布时间:2023-09-04 23:16
共1个回答
热心网友 时间:2024-05-05 17:28
有跳跃间断点的函数的变上限积分函数连续的。变上限积分函数应该出现的是类似于|x|这样分段的函数,分段点连续,但是不可导的情况。
所以如果是有第二类间断点,如无穷间断点,震荡间断点,是有可能(但也只是有可能,不是一定)不可积。而如果是有限个第一类(无论是跳跃间断点,还是可去间断点),都必然是可积的。
函数可积的充分条件:
1、定理1设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
2、定理2设f(x)在区间[a,b]上有界,且只有有限个第一类间断点,则f(x)在[a,b]上可积。
3、定理3设f(x)在区间[a,b]上单调有界,则f(x)在[a,b]上可积。
可积函数的有界
任何一个可积函数一定是有界的,但是需要注意的是,有界函数不一定可积。在其定义域上的每一点都不连续的函数。狄利克雷函数是处处不连续函数的一个例子。
若f(x)为一函数,定义域和值域都是实数,若针对每一个x,都存在ε>0 ,使得针对每一个δ>0,都可以找到y,使下式成立,则f(x)为处处不连续函数:0< |x−y|<δ 且|f(x)−f(y)|≥ε。