发布网友 发布时间:2022-04-25 14:19
共2个回答
热心网友 时间:2022-06-03 21:36
展开3全部E(3x^2+2)=3 E(x^2)+2
在概率论和统计学中,数学期望(或均值)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
(1)离散型
如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。
(2)连续型
若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续型随机变量,f(x)称为X的概率密度函数(分布密度函数)。
扩展资料:
应用
在统计学中,当估算一个变量的期望值时,一个经常用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。
在概率分布中,期望值和方差或标准差是一种分布的重要特征。在经典力学中,物体重心的算法与期望值的算法十分近似。期望值也可以通过方差计算公式来计算方差。
参考资料:百度百科-期望值
热心网友 时间:2022-06-03 21:36
解:X服从正态分布N(3000,1000)