平面向量垂直公式证明
发布网友
发布时间:2023-08-08 16:51
我来回答
共2个回答
热心网友
时间:2023-09-25 05:31
设:β1=(x1,y1).β2=(x2,y2).(β1≠0.β2≠0).
x轴到β1的转角为α1,x轴到β2的转角为α2,
则:sinα1=y1/√(x1²+y1²),cosα1=x1/√(x1²+y1²),
sinα2=y2/√(x2²+y2²),cosα2=x2/√(x2²+y2²),
x1x2+y1y2=0 ↔ (x1x2+y1y2)/[√(x1²+y1²)√(x2²+y2²)]=0↔
↔ cosα1cosα2+sinα1sinα2=0 ↔ cos(α1-α2)=0 ↔ α1-α2=±π/2↔
↔β1⊥β2.
热心网友
时间:2023-09-25 05:32
假设向量a//向量b
a=(x1,y1),b=(x2,y2)
则有a=λb
(x1,y1)=(λx2,λy2)
即x1/x2=y1/y2=λ
变形得x1y2-x2y1=0
我简单说一下,因为乘过去了,所以排除了“零”的问题
---------------------------
下面证明垂直,垂直很简单,用数量积
假设向量a⊥向量b,a=(x1,y1),b=(x2,y2)
∴向量a·向量b=0
∴x1x2+y1y2=0