概率论与数理统计复习提纲及常用公式,跪求!急急急!!!
发布网友
发布时间:2022-04-25 15:05
我来回答
共1个回答
热心网友
时间:2023-10-10 22:23
概率论与数理统计复习提纲
一,事件的运算
如果A,B,C为三事件,则A+B+C为至少一次发生, ABC为同时发生,
AB+BC+AC为至少两次发生, 为恰有两次发生.
为恰有一次发生, 等等, 要善于将语言翻译成事件运算公式以及将公式翻译成语言..
如果A,B为对立事件, 则 , 因此 ,
二, 加法法则
如A与B互不相容, 则P(A+B)=P(A)+P(B)
而对于任给的A与B有
P(A+B)=P(A)+P(B)-P(AB) (1)
因此, P(A+B),P(A),P(B),P(AB)这四个概率只要知道三个,剩下一个就能够求出来.
因 将B分解为AB与 两个互不相容事件,
则
(2)
将这两个式子分别代入到(1)式, 可以得
因此P(A+B),P(A)及 这三个概率只要知道两个, 剩下那个就能求出来, 同样, P(A+B),P(B)及 只要知道两个,剩下那个就能求出来.例如, 在已知P(A+B),
A与B只有一件发生的概率为
由(2)式可知
因此A与B只有一件发生的概率为
三, 全概率公式和贝叶斯公式
设A1,A2,…,构成完备事件组, 则任给事件B有
(全概率公式),
及
(贝叶斯公式)
其中, 最常用的完备事件组, 就是一个事件A与它的逆 , 即任给事件A,B有
通常是将试验想象为分为两步做, 第一步的结果将导致A或者 之一发生, 而这将影响到第二步的结果的事件B是否发生的概率. 如果是已知第一步的各事件概率及第一步各事件发生条件下第二步事件B发生的概率, 并要求B发生的概率, 就用全概率公式. 而如果是要求在第二步事件B已经发生条件下第一步各事件的概率, 就用贝叶斯公式.
四, 随机变量及分布
1. 离散型随机变量
一元: P(ξ=xk)=pk (k=1,2,…),
二元: P{ξ=xk, η=yj)=pij (i,j=1,2,…)
边缘分布与联合分布的关系:
要注意二元随机变量的函数的计算中, 要合并计算后的值有重合的情况.
2. 连续型随机变量
, , 性质:
分布函数为 , 且有
如ξ~φ(x), η=f(ξ), 则求η的概率密度函数的办法, 是先求η的分布函数Fη(x),
,
然后对Fη(x)求导即得η的概率密度函数.
五, 随机变量的数字特征
数学期望:
离散型:
连续型:
方差:
离散型: 先计算 , 则
连续型: 先计算 则
六, 几种常用的分布
二项分布
ξ~B(n,p)是指 .
它描述了贝努里独立试验概型中, 事件A发生k次的概率. 试验可以同时进行, 也可以依次进行.
均匀分布
ξ服从[a,b]上的均匀分布, 是指
如ξ服从[0,1]上的均匀分布, η=kξ+c, 则η服从[c, k+c]上的均匀分布.
七, 无偏估计
对参数 的估计 是无偏估计, 是指 , 一般来讲, 是Eξ的无偏估计, 而S2是Dξ的无偏估计. 但是, 在 是 的无偏估计时, 不能肯定f( )是f( )的无偏估计, 须另作分析.
八, 最大似然估计
对于n个样本值x1,x2,…,xn
如总体ξ为连续型随机变量, ξ~φ(x;θ), 则似然函数
而如总体ξ为离散型随机变量, P(ξ=xi)=p(xi;θ), 则似然函数
则解似然方程
解得θ的最大似然估计值
九, 区间估计
在正态总体下, 即总体ξ~N(μ,σ2)时,
如果σ2为已知, 则 , 则在给定检验水平α时, 查正态分布表求uα使 , 则置信度为1-α的置信区间为
如果σ2为未知, 则 , 其中S为样本方差的开平方(或者说测得的标准差. 查t-分布表求tα使 , 则置信度为1-α的置信区间为 .
十, 假设检验
在正态总体下,即总体ξ~N(μ,σ2)时,
在σ2为已知条件下, 检验假设H0: μ=μ0, 选取统计量 , 则在H0成立的条件下U~N(0,1), 对于给定的检验水平α, 查正态分布表确定临界值uα, 使 , 根据样本观察值计算统计量U的值u与uα比较, 如|u|>uα则否定H0, 否则接收H0.
如σ2为未知, 则选取统计量 , 在H0假设成立时T~t(n-1), 对于给定的检验水平α和样本容量n, 查t-分布表确定临界值tα使P(|T|>tα)=α, 根据样本观察值计算统计量T的值t与tα比较, 如|t|>tα则否定H0, 否则接收H0.
如果是大样本情况下,t-分布接近标准正态分布,因此又可以查正态分布表。这时,认为样式本方差可以作为精确的方差使用。
需要重点练习的习题和例题:
p5: 例2. p6: 例3. p226: 1,2. p27: 20. p59: 36,37. p99: 1. p28: 27,28,30. p56: 16,19. p57: 22,23. p59: 33,34. p76: 14,15. p164: 2,4. p165: 8,11. p184: 1,2. p235: 58,60.
概率论与数理统计复习提纲及常用公式,跪求!急急急!!!
通常是将试验想象为分为两步做, 第一步的结果将导致A或者 之一发生, 而这将影响到第二步的结果的事件B是否发生的概率. 如果是已知第一步的各事件概率及第一步各事件发生条件下第二步事件B发生的概率, 并要求B发生的概率, 就用全概率公式. 而如果是要求在第二步事件B已经发生条件下第一步各事件...
概率论与数理统计复习时应该注意什么
1.古典概型 2.贝努里概型 二、加法公式(广义、狭义、三个事件加法公式);减法公式(广义、狭义);对立事件公式 三、条件概率与乘法公式 ★四、全概率公式(格式要规范)五、独立事件公式(乘法公式、加法公式)六、几个易混淆的概念:互斥(互不相容)、对立、独立 第二章 (一维)随机变量及其分布 ...
概率论与数理统计的公式及定义总结
1.随机事件和概率,包括样本空间与随机事件;概率的定义与性质(含古典概型、几何概型、加法公式);条件概率与概率的乘法公式;事件之间的关系与运算(含事件的独立性);全概公式与贝叶斯公式;伯努利概型。2.随机变量及其概率分布,包括随机变量的概念及分类;离散型随机变量概率分布及其性质;连续型随机...
概率论与数理统计不挂科要点!!!
概率论和数理统计拿高分的方法。基本公式要掌握 首先必须会计算古典型概率,这个用高中数学的知识就可解决,如果在解古典概率方面有些薄弱,就应该系统地把高中数学中的概率知识复习一遍了,而且要将每类型的概率求解问题都做会了,虽然不一定会考到,但也要预防万一,而且为后面的复习做准备。随机事件和概...
概率论与数理统计中,概率的公式是什么?
一般加法公式:P(A+B) =P(A)+P(B)-P(AB)例如:P(A|B) = 1/4 P(A∩B)/P(B)=1/4 P(A∩B) =1/8 P(~A|~B)=P(~A∩~B) /P(~B)=P(~(AUB) ) /[1 -P(B)]=[1-P(AUB) ]/[1 -P(B)]=[ 1- P(A)-P(B) +P(A∩B) ] /[1 -P(B)]=( 1- 1/3 ...
概率论和数理统计(个人总结篇)
2. 全概率公式:</ 它阐述了所有可能条件下事件发生的总概率,是概率论中的基石。3. Bayes公式:</ 它是条件概率的逆运算,常用于数据分析中的推断问题。4. 乘法公式:</ 描述了多个事件同时发生的概率乘法规则。独立重复试验与二项分布当重复某个独立事件n次,二项分布B(n, k) 描述了事件A恰好...
概率论与数理统计的目 录
2.3几何概型1.2.4概率的公理化定义1.2.5概率的基本性质1.3条件概率、事件的独立性1.3.1条件概率1.3.2乘法公式1.3.3事件的独立性1.4全概率公式与贝叶斯公式1.5n重伯努利概型习题一第2章随机变量及其概率分布2.1随机变量2.2离散型随机变量2.2.1一维离散型随机变量的概念2.2.2常见的离散...
我是自考概率论与数理统计的,有好多公式没有,,有哪位能提供啊。如。P...
若:A、B为独立事件,则:P(AB)=P(A)P(B)全概率公式:P(AB)=P(A|B)P(B)=P(B|A)P(A)
【悬赏】大学学习的概率论与数理统计,几个概率题目,初学者求解...
1.固定公式p{|X-μ|<3σ}=p{|X-μ|/σ<3}=2Φ(3)-1=0.9974 2.上分位数概念。α=P{|X|<x}=1-P{|X|>=x}=1-2P{X>=x} 因此P{X>=x}=(1-a)/2 x=Z((1-α)/2)3.定理,若概率密度f(x)满足f(-x)=f(x),即概率密度函数是偶函数,则分布函数F(0)=1/2 F(-...
概率论与数理统计复习时应该注意什么?
积分是要用到的,概率前面的随机变量不是离散就是连续型的,其中连续型的求分布函数不论一次二次都是要用积分的,包括什么边际呀什么的,不过也不是很难的,关键是看例题,或者是以前的作业,最后用到做题目中的也就是那几种了。还有就是,不懂就问会的人呗,与其自己重新啃书本,不如直接窃取别人...