一道高数题,求和函数
发布网友
发布时间:2022-04-25 13:48
我来回答
共1个回答
热心网友
时间:2023-10-04 06:21
解:∵ρ=lim(n→∞)丨an+1/an丨=lim(n→∞)(5^n)/5^(n+1)=1/5,∴收敛半径R=1/ρ=5。
又,lim(n→∞)丨un+1/un丨=x²/R<1,∴其收敛区间为,丨x丨<√5。∴其收敛区间为,丨x丨<√5。
而,当x=±√5时,级数∑(-1)^n发散。∴其收敛域为丨x丨<√5。
原式=∑[(-1)^n](x/√5)^(2n)=∑(-x²/5)^n=(-x²/5)/(1+x²/5)=-x²/(5+x²)。
供参考。