中国剩余定理的别称是什么
发布网友
发布时间:2022-04-25 21:28
我来回答
共4个回答
热心网友
时间:2022-06-17 16:22
中国剩余定理,被称为孙子定理。
在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之 剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。
即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。宋朝数学家秦九韶于1247年《数书九章》卷一、二《大衍类》对“物不知数”问题做出了完整系统的解答。明朝数学家程大位将解法编成易于上口的《孙子歌诀》:“三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五使得知.“
这个歌诀给出了模数为3、5、7时候的同余方程的秦九韶解法。意思是:将除以3得到的余数乘以70,将除以5得到的余数乘以21,将除以7得到的余数乘以15,全部加起来后除以105(或者105的倍数),得到的余数就是答案。比如说在以上的物不知数问题里面,按歌诀求出的结果就是23。
热心网友
时间:2022-06-17 16:23
中国剩余定理一般指孙子定理
孙子定理是中国古代求解一次同余式组(见同余)的方法。是数论中一个重要定理。又称中国余数定理。一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:
有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。
热心网友
时间:2022-06-17 16:23
01 中国余数定理
中国剩余定理,又称中国余数定理,是数论中的一个关于一元线性同余方程组的定理,说明了一元线性同余方程组有解的准则以及求解方法。也称为孙子定理,古有“韩信点兵”、“孙子定理”、“求一术”(宋沈括)、“鬼谷算”(宋周密)、“隔墙算”(宋 周密)、“剪管术”(宋杨辉)、“秦王暗点兵”、“物不知数”之名。
中国剩余定理的别称是中国余数定理,一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。
宋朝数学家秦九韶于1247年《数书九章》卷一、二《大衍类》对“物不知数”问题做出了完整系统的解答。明朝数学家程大位在《算法统宗》中将解法编成易于上口的《孙子歌诀》:三人同行七十希,五树梅花廿一支,七子团圆正半月,除百零五便得知。
这个歌诀给出了模数为3、5、7时候的同余方程的秦九韶解法。意思是:将除以3得到的余数乘以70,将除以5得到的余数乘以21,将除以7得到的余数乘以15,全部加起来后再减去105或者105的整数倍,得到的数就是答案(除以105得到的余数则为最小答案)。
热心网友
时间:2022-06-17 16:24
别称是什么至少4个
我来答 分享 举报
11个回答 #热议# 鹿晗发文告别赵彬彬,赵彬彬人设怎么样?
ss22433
TA获得超过14.4万个认可 2018-10-28
关注
中国的别2113称有华夏,九州,中华,5261神州,海内。
1、华夏。也称“4102夏”、“1653诸夏”。是古代居住于中原地区的原住民的自称,以区别四夷。
2、九州。也叫做神州,十二州,是中国汉族先民在先秦时期典籍《尚书·禹贡》中所记载的地域区划。
3、中华。古代华夏族多建都于黄河南北,以其在四方之中,因称之为中华,是汉族最初兴起的地方。
4、神州。俗称“神州大地”,又名“赤县神州”、“九州”,是属于黄种人汉民族的民族共同地域。
5、海内。是指国境之内,也就是指全国。古代传说我国疆土四面环海,故称国境之内为海内。
中华人民共和国位于亚洲东部,太平洋西岸,是工人阶级领导的、以工农联盟为基础的人民民主专政的社会主义国家。