发布网友 发布时间:2022-04-25 18:24
共2个回答
热心网友 时间:2022-05-03 01:25
看到这个问题有点小兴奋,我来推荐一份人工智能书单。
1、机器学习精讲
机器学习原理算法与应用教程,精简机器学习入门手册,美亚机器学习深度学习畅销书,全彩印刷,扫描书中二维码可阅读补充内容,人工智能和机器学习领域众多知名专家推荐。
2、动手学深度学习
目前市面上有关深度学习介绍的书籍大多可分两类,一类侧重方法介绍,另一类侧重实践和深度学习工具的介绍。本书同时覆盖方法和实践。本书不仅从数学的角度阐述深度学习的技术与应用,还包含可运行的代码,为读者展示如何在实际中解决问题。
为了给读者提供一种交互式的学习体验,本书不但提供免费的教学视频和讨论区,而且提供可运行的Jupyter记事本文件,充分利用Jupyter记事本能将文字、代码、公式和图像统一起来的优势。这样不仅直接将数学公式对应成实际代码,而且可以修改代码、观察结果并及时获取经验,从而带给读者全新的、交互式的深度学习的学习体验。
3、深度学习
本书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等。
并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。最后,本书还提供了一些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型。
4、人工智能(第2版)
本书是作者结合多年教学经验、精心撰写的一本人工智能教科书,堪称“人工智能的百科全书”。全书涵盖了人工智能简史、搜索方法、知情搜索、博弈中的搜索、人工智能中的逻辑、知识表示、产生式系统、专家系统、机器学习和神经网络、遗传算法、自然语言处理、自动规划、机器人技术、高级计算机博弈、人工智能的历史和未来等主题。
5、Python 神经网络编程
本书将带领您进行一场妙趣横生却又有条不紊的旅行——从一个非常简单的想法开始,逐步理解神经网络的工作机制。您无需任何超出中学范围的数学知识,并且本书还给出易于理解的微积分简介。本书的目标是让尽可能多的普通读者理解神经网络。读者将学习使用Python开发自己的神经网络,训练它识别手写数字,甚至可以与专业的神经网络相媲美。
热心网友 时间:2022-05-03 02:43
《深度学习与目标检测》这本书蛮不错的,里面讲述了很多有关深度学习等知识,既适合深度学习的爱好者,又适合在人工智能行业的从业者。
此书大致分为基础部分,进阶部分与应用的部分,基础篇里主要分为深度学习、深度神经网络和卷积神经网络;进阶篇主要讲述两阶段目标检测与单阶段目标检测;剩下的医学影像检测、车道线检测以及交通视频分析都属于应用篇。
这本书可以带你从理论到实践一览深度学习的基本概念及其在目标检测领域的应用也可以让你获得深度学习与目标检测知识的梳理及工程实践的启发。