如何判断一个级数是否为发散级数?
发布网友
发布时间:2023-09-11 04:03
我来回答
共1个回答
热心网友
时间:2024-12-04 06:51
很多人一开始看到这个问题,常常会很直觉的回答:[收敛级数]。因为当级数继续发
展下去,所加上的数便会趋近於无限小,趋近於零,对整个级数的影响也相对变小,故得
知1+1/2+1/3+1/4+…..为收敛级数,这样的解释看似合理,但事实真是如此吗?大家都应
该知道,所谓发散级数,指的就是无论加上多小的数,虽然一开始没有太大的变化,但加
到某个范围便会持续变大,而上列的题目便是属於这种例子。
一开始我们先设原式为:
A=1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10+1/11+1/12+1/13+1/13+……
然后再设另一式为:
B=1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+(1/16+1/16+1/16+1/16+1/16+……..
所以A
>B
………..
a
=>B=
1+1/2+1/4×2+1/8×4+1/16×8+1/32×16+1/64×32+1/128×64+…………
=1+1/2+1/2+1/2+1/2+1/2+1/2+1/2+………..
由上是得知B为发散级数
……..
b
由a,b两个条件
∴
A为发散级数