设x属于[0,2]时, 有|f(x)|<=1, |f''(x)|<=1, 证明对任意x属于[0,2]
发布网友
发布时间:2023-09-23 21:17
我来回答
共1个回答
热心网友
时间:2024-02-14 23:51
将函数f(x)在x=x0处展开成一阶泰勒级数,得
f(x)=f(x0)+f'(x0)(x-x0)+1/2f''(ξ)(x-x0)²
在任意点x∈[0,2]处展开成一阶泰勒级数,得
f(t)=f(x)+f'(x)(t-x)+1/2f''(ξ)(t-x)²
则
f(0)=f(x)-f'(x)x+1/2f''(ξ1)x² .①
f(2)=f(x)+f'(x)(2-x)+1/2f''(ξ2)(2-x)² .②
②-①,整理后,得
f'(x)=1/2f(2)-1/2f(0)-1/4f''(ξ2)(2-x)²+1/4f''(ξ1)x² .③
|f'(x)|≤1/2|f(2)|+1/2|f(0)|+1/4|f''(ξ2)|(2-x)²+1/4|f''(ξ1)|x²
≤1/2+1/2+1/4(2-x)²+1/4x²=2+1/2x(x-2)≤2 .④
请采纳,谢谢!