发布网友 发布时间:2022-04-24 13:32
共2个回答
热心网友 时间:2022-05-18 09:57
通过与BI系统相结合,根据不同工作流程所处阶段和分析需求角度出发,BI数据分析可被划分为描述性分析、诊断性分析、预测性分析和处方式分析四种类型。
1.描述性分析
描述性分析主要需要汇总原始数据,并将其转化为人可以理解的形式,例如各种报表、图表等。需要注意的是描述性分析通常都是从过去的数据里提取出有价值的见解,但往往不具备解释问题发生原因的能力。
2.诊断性分析
诊断性分析是基于描述性分析的基础之上。通过诊断性分析,可以深入挖掘问题根源,识别依赖关系,找出影响因素。借助联动、下钻、挖掘、预警等方法,可以知道问题是如何发生的,企业接下来需要关注哪些方面以帮助解决问题。
3.预测性分析
相比较于描述性分析和诊断性分析在过去数据上的集中,预测性分析往往更能说明未来可能发生的事情。通过使用描述性和诊断性分析的结果来检测趋势、异常或做聚类分析后,对未来进行动态预测。
4.处方式分析
处方式分析是基于对“发生了什么”、“为什么会发生”、“可能会发生什么”的分析,通过算法手段最优化决策,来帮助用户决定应该采取什么措施,以便消除未来可能发生的问题或获得更有利的趋势。作为最先进的分析方法,它不仅需要历史数据,还需要很多外部信息,利用更为复杂的工具和技术,如机器学习、业务规则和算法等,这也决定了它的实施和管理相对于其他分析类型来说更加复杂。
做好BI数据分析不可或缺的分析流程
要做好BI数据分析,整个过程可拆分为以下7个步骤:
BI数据分析流程
① 明确需求
明确需求是数据分析的第一个步骤,一般刚入门的分析是以被动分析为主,也就是他人发现问题,你来进行数据分析,所以要清晰的勾绘需求内容,让输出结果与需求的契合度更高。
② 确定思路
分析思路可谓是分析的“灵魂”所在,它是将分析工作进行细化,分析思路清晰、有逻辑,可避免一个问题反复分析的情况。
确定思路需要从分析目的出发全面、深入拆解分析维度,确定分析方法,最终形成完整的分析框架。
③ 处理数据
当拿到数据时,数据不能满足直接用来分析,所以需要将收集到的杂乱无章的数据,快速、准确加工成适合数据分析的样式。
④ 分析数据
分析数据是分析流程重中之重的工作,可谓是“抽丝剥茧”,它是从分析目的出发,按照分析思路,运用适当的分析方法或分析模型,使用分析工具,对处理过的数据进行分析,提取出有价值的信息。
⑤ 展示数据
展示数据也称为“数据可视化”是以简单、直观的方式传达出数据包含的信息,增强数据的‘易读性’,让阅读者轻而易举的就看出数据表达的内容。
俗话说的好“文不如表,表不如图”,所以展示数据一般用图表进行展示,常用图表有表格、柱状图、折线图、条形图、散点图、饼图。
⑥ 撰写报告
撰写报告是指以文档形式输出分析结果,其内容是通过数据全方位的科学分析来展现运营情况,能够为决策者提供强有力的决策依据,从而降低运营风险,提高盈利。分析报告就是第1步~第5步工作的总结,以文档的形式展现“推理”的过程,并说明最终的结论。
⑦ 效果反馈
所谓效果反馈就是选择恰当且代表性的指标,及时监控报告中提出的策略执行进度、执行效果。
一般第 7 步效果反馈后还会回到第 1 步需求沟通,与他人沟通反馈效果情况,比如是否有异常、异常原因、下一步动作等,如此反复迭代,就形成了闭环分析。
热心网友 时间:2022-05-18 09:57
主要体现在以下几方面