发布网友 发布时间:2022-04-24 11:56
共5个回答
懂视网 时间:2022-08-18 16:21
首先判断是不是左顶点或右顶点,如果是,那么方程就是x=“左顶点或右顶点的x坐标”。
如果不是,根据该点坐标利用“点斜式”设直线方程,里面只有斜率一个未知量。
将直线方程代入椭圆方程,令判别式等于0,即可求出斜率,也就获得了直线方程,即切线方程。
1、设切线斜率为k,得出直线点斜式方程2、直线和椭圆方程联立得出一个一元二次方程3、一元二次方程判别式=0,求出k,即可。
热心网友 时间:2024-03-01 20:31
设椭圆的方程为x^2/a^2+y^2/b^2=1,点P(x0,y0)在椭圆上,
则过点P的椭圆的切线方程为(x·x0)/a^2 + (y·y0)/b^2=1
在实际应用中,只需将对应的x0,y0代入即可得到椭圆在某一个具体点的切线方程。
扩展资料
利用解析几何的方法求椭圆的切线方程的步骤为:
设C:((x^2)/(a^2))+((y^2)/(b^2))=1-----式1;
(a^2)-(b^2)=(c^2);
F1(-c,0);F2(c,0);P(xp,yp)
AB:(y-yp)=k(x-xp)=>y=kx+(yp-kxp);令m=yp-kxp=>AB:y=kx+m-----式2;
联立式1和式2消去y得:((k^2)+((b^2)/(a^2)))(x^2)+2kmx+((m^2)-(b^2))=0;
因为直线AB切椭圆C于点P,所以上式只有唯一解,则:
4((km)^2)-4((k^2)+((b^2)/(a^2)))((m^2)-(b^2))=0=>m^2=((ak)^2)+(b^2);
m^2=(yp-kxp)^2=((yp)^2)+((kxp)^2)-2kxpyp=((ak)^2)+(b^2);
=>((a^2)-(xp^2))(k^2)+2xpypk+((b^2)-(yp^2));
由根的判别式得:4((xpyp)^2)-4((a^2)-(xp^2))((b^2)-(yp^2))=0;
所以k值有唯一解:k=(-2xpyp)/(2((a^2)-(xp^2)))=-xpyp/((a^2)-(xp^2));
由式1得:(a^2)-(xp^2)=(ayp/b)^2=>k=-(xp(b^2))/(yp(a^2));
m=yp-kxp=(((ypa)^2)+((xpb)^2))/(yp(a^2))=((ab)^2)/(yp(a^2))=(b^2)/yp;
设A0F1、B0F2分别过F1、F2垂直AB于A0、B0;
A0F1:(y-0)=(-1/k)(x+c)=>x+ky+c=0-----式3;
联立式2和式3消去y得:x=-(km+c)/((k^2)+1);
联立式2和式3消去x得:y= (m-kc)/((k^2)+1);
则:A0:(-(km+c)/((k^2)+1),(m-kc)/((k^2)+1))
参考资料百度百科-椭圆
热心网友 时间:2024-03-01 20:32
设椭圆的方程为x^2/a^2+y^2/b^2=1,
点P(x0,y0)在椭圆上,
则过点P的椭圆的切线方程为(x·x0)/a^2 + (y·y0)/b^2=1
热心网友 时间:2024-03-01 20:32
椭圆的方程为x^2/a^2+y^2/b^2=1,点P(x0,y0)在椭圆上,热心网友 时间:2024-03-01 20:33
求椭圆在某点处的切线方程的一般步骤如下:热心网友 时间:2024-03-01 20:33
直接用公式: