发布网友 发布时间:2022-04-24 11:52
共4个回答
热心网友 时间:2023-10-11 20:53
可以。
无限循环小数可以化成分数。小数分为两大类:一类是有限小数,一类是无限小数.而无限小数又分为两类:无限循环小数和无限不循环小数;有限小数都可以表示成十分之几、百分之几、千分之几……,很容易化为分数.无限不循环小数即无理数,它是不能转化成分数的.但无限循环小数却可以化成分数,例如(1)0.323232……(即0.3(·)2(·))化成分数.
分析:设x=3(·)2(·)=0.32+0.0032+0.000032+…… ①
上面的方程两边都乘以100得100x=32+0.32+0.0032+0.000032+…… ②
②-①得
100x-x=3299x=32x= 99(32)
所以0323232……= 99(32)
用同样方法,我们再探索把0.5(·),0.3(·)02(·)化为分数.可知0.5(·)= 9(5),0.3(·)02(·)=999(302).我们把循环节从小数点后第一位开始循环的小数叫做纯循环小数,通过上面的探索可以发现,纯循环小数的循环节最少位数是几,化成分数的分母就有几个9组成,分子恰好是一个循环节的数字。 同样的方法,可化0.172(·)5(·)=9900(1708),0. 32(·)9(·)=990(326).;
把循环节不从小数点后第一位开始循环的小数叫做混循环小数.混循环小数化分数的规律是:循环节的最少位数是n,分母中就有n个9,第一个循环节前有几位小数,分母中的9后面就有几个0,分子是从小数点后第一位直到第一个循环节末尾的数字组成的数,减去一个循环节数字的差,例如0.172(·)5(·)化成分数的分子是1725-17=1708,0. 32(·)9(·)化成分数的分子是329-3=326。
扩展资料:
循环小数分为混循环小数、纯循环小数两大类。
混循环小数可以*10^n(n为小数点后非循环位数),所以循环小数化为分数都可以最终通过纯循环小数来转化。
无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。
例如:0.333333……
循环节为3
则0.33333.....=3*10^(-1)+3*10^(-2)+……+3*10^(-n)+……
前n项和为:0.3[1-(0.1)^(n)]/(1-0.1)
当n趋向无穷时(0.1)^(n)=0
因此0.3333……=0.3/0.9=1/3
注意:m^n的意义为m的n次方。
再如:0.999999.......
循环节为9
则0.9999.....=9*10^(-1)+9*10^(-2)+……+9*10^(-n)+……
前n项和为:{0.9*[1-(0.1)^n]}/(1-0.1)
当n趋向无穷时(0.1)^n=0
因此:0.99999.....=0.9/0.9=1
其他小数
1、有限小数化成分数:分母的首位数是1后面是0,0的个数与小数位数的个数相同,分子是把有限小数取作整数,把小数点右边的数看作整数作为分子,但不包括小数点右边十分位、百分位、千分位,...上的0,能约分的要化简,譬如:将0.678化为分数,即678/1000=339/500,0.1681=1681/10000,0.087=87/1000,0.0078=78/10000=39/5000,...;
2、带小数(混小数)化成分数:
譬如:将2.18化成分数,解:因为2.18=2+0.18,所以,2.18=2+0.18=2+(18/100)=2+(9/50)=109/50,把3.1415化成分数,∵3.1415=3+0.1415,∴3.1415=3+(1415/10000)=3+(283/2000)=6283/2000,等等以此类推,能约分的一定要化简;
3、负小数化成分数其法则、方法与以上相同:
譬如:-0. ˙186˙=-186/999=-62/333,-0.0˙87˙=-87/990=-29/330,-0.5678=-5678/10000=-2839/5000,等等依次类推,能约分的一定要化为最简分数。
参考资料:百度百科-无限循环小数化分数
热心网友 时间:2023-10-11 20:53
可以。热心网友 时间:2023-10-11 20:54
无限循环小数可以化成分数。热心网友 时间:2023-10-11 20:54
可以的,方法就是循环节对应的数字,有几位就除以几个九。