发布网友 发布时间:2022-04-24 12:02
共1个回答
热心网友 时间:2023-10-12 03:03
摘要您好很高兴为您服务。Fourier theory讲的就是:任何信号(如图像信号)都可以表示成一系列正弦信号的叠加,在图像领域就是将图像brightness variation 作为正弦变量。比如下图的正弦模式可在单傅里叶中由三个分量编码:频率f、幅值A、相位γ 这三个value可以描述正弦图像中的所有信息。1.frequencyfrequency在空间域上可由亮度调节,例如左图的frequency比右图的frequency低……2.幅值magnitude(amplitude)sin函数的幅值用于描述对比度,或者说是图像中最明和最暗的峰值之间的差。(一个负幅值表示一个对比逆转,即明暗交换。)3.相位表示相对于原始波形,这个波形的偏移量(左or右)。=================================================================一个傅里叶变换编码是一系列正弦曲线的编码,他们的频率从0开始(即没有调整,相位为0,平均亮度处),到尼奎斯特频率(即数字图像中可被编码的最高频率,它和像素大小、resolution有关)。傅里叶变换同时将图像中所有频率进行编码:一个只包含一个频率f1的信号在频谱上横坐标f为f1的点处绘制一个单峰值,峰值高度等于对应的振幅amplitude,或者正弦曲线信号的高度。如下图所示。DC term直流信号对应于频率为0的点,表示整幅图像的平均亮度,如果直流信号DC=0就表示整幅图像平均亮度的像素点个数=0,可推出 灰度图中,正弦曲线在正负值之间交替变化,但是由于灰度图中没有负值,所以所有的真实图像都有一个正的DC term,如上图所示。出于某些数学分析原因,我们经常把傅里叶变换用mirror-image表示,在原点的的两端,frequency都是增加的方向,具有相同的幅值。上面讲的都是一维信号,一个二维傅里叶变换是一维傅里叶变换在每一个行扫描线和列扫描线上的傅里叶变换的叠加。傅里叶谱图上的每一个像素点都代表一个频率值,幅值由像素点亮度变码而得。最中心的亮点是指直流分量,傅里叶谱图中越亮的点,对应于灰度图中对比越强烈(对比度越大)的点。由于每一列扫描线上没有变化,所以相应的fourier spectrum上行向量为咨询记录 · 回答于2021-10-18图像傅里叶变换频谱的直流分量等于什么?有什么物理意义?您好很高兴为您服务。Fourier theory讲的就是:任何信号(如图像信号)都可以表示成一系列正弦信号的叠加,在图像领域就是将图像brightness variation 作为正弦变量。比如下图的正弦模式可在单傅里叶中由三个分量编码:频率f、幅值A、相位γ 这三个value可以描述正弦图像中的所有信息。1.frequency frequency在空间域上可由亮度调节,例如左图的frequency比右图的frequency低…… 2.幅值magnitude(amplitude)sin函数的幅值用于描述对比度,或者说是图像中最明和最暗的峰值之间的差。(一个负幅值表示一个对比逆转,即明暗交换。)3.相位表示相对于原始波形,这个波形的偏移量(左or右)。=================================================================一个傅里叶变换编码是一系列正弦曲线的编码,他们的频率从0开始(即没有调整,相位为0,平均亮度处),到尼奎斯特频率(即数字图像中可被编码的最高频率,它和像素大小、resolution有关)。傅里叶变换同时将图像中所有频率进行编码:一个只包含一个频率f1的信号在频谱上横坐标f为f1的点处绘制一个单峰值,峰值高度等于对应的振幅amplitude,或者正弦曲线信号的高度。如下图所示。DC term直流信号对应于频率为0的点,表示整幅图像的平均亮度,如果直流信号DC=0就表示整幅图像平均亮度的像素点个数=0,可推出 灰度图中,正弦曲线在正负值之间交替变化,但是由于灰度图中没有负值,所以所有的真实图像都有一个正的DC term,如上图所示。出于某些数学分析原因,我们经常把傅里叶变换用mirror-image表示,在原点的的两端,frequency都是增加的方向,具有相同的幅值。上面讲的都是一维信号,一个二维傅里叶变换是一维傅里叶变换在每一个行扫描线和列扫描线上的傅里叶变换的叠加。 傅里叶谱图上的每一个像素点都代表一个频率值,幅值由像素点亮度变码而得。最中心的亮点是指直流分量,傅里叶谱图中越亮的点,对应于灰度图中对比越强烈(对比度越大)的点。由于每一列扫描线上没有变化,所以相应的fourier spectrum上行向量为您好,很高兴为您服务。图像傅立叶变换的物理意义傅里叶提出任何周期函数都可以表示为不同频率的正弦和/或余弦和的形式,每个正弦和/或余弦乘以不同的系数(傅里叶级数)。图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度.在噪声点和图像边缘处的频率为高频。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数.傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除谢谢啦 帮忙说一下小波变换在图像处理领域的应用情况。分析比较巴特沃斯低通滤波器和指数低通滤波器在图像平滑方面与理想低通滤波器的区别举两个在频率域进行图像处理的例子。图像频域平滑(去噪):使用自生成图像(包含白色区域,黑色区域,并且部分区域添加椒盐噪声),然后进行傅里叶变换,并且分别使用理想低通滤波器、巴特沃斯低通滤波器、指数低通滤波器和梯形低通滤波器(至少使用两种低通滤波器),显示滤波前后的频域能量分布图,空间图像。注意:uint8类型的,会认为是0到255之间 double类型的 会认为是0到1之间!! 复数类型时,显示时一般先取幅值real,再用 uint8(255.*矩阵)!!%图像频域平滑 理想 和 巴特沃斯%自制黑白灰度图像for i=1:300 for j =1:300 I(i,j)=0; endendfor i=1:30 for j =1:50 I(100+i,100+j)=255; endendA=I;%椒盐噪声处理AN = imnoise(A,'salt & pepper',0.04);D0 = 20;%截止频率subplot(331);imshow(A);title('原图');subplot(332);imshow(AN);title('椒盐噪声处理');AN= double(AN);ADFT =fft2(AN);%傅里叶变换后的矩阵ADFT=fftshift(ADFT);%直流分量移到频谱中心subplot(333);imshow(ADFT);title('滤波前频率能量分布');[m,n] = size(ADFT);A1 = double(zeros(m,n));H = double(zeros(m,n));for i = 1:m for j = 1:n d=sqrt((i-round(m/2))^2+(j-round(n/2))^2); if d<=D0 H(i,j)=1; end endendAAA=uint8(255.*H);subplot(334)imshow(AAA);title('理想低通滤波器') AIDFT = ADFT.*H;subplot(335);imshow(AIDFT);title('理想滤波后的频域能量分布')AIDFT=ifftshift(AIDFT);%直流分量移回到左上角AIDFT2 = ifft2(AIDFT);AIDFT3=(real(AIDFT2));%取幅值并转换成8位无符号整数AIDFT4 = uint8(255.*AIDFT3);% uint8类型的,会认为是0到255之间 double类型的 会认为是0到1之间!!subplot(336)imshow(AIDFT4);title('加上理想低通滤波器后') AN=一阶导数算子与二阶导数算子在提取图像边缘及细节信息时,有何异同之处?如果要识别一幅图像中包含的动物到底是猫还是狗,如何实现?请简述处理流程。您好,还在吗您好抱歉让您久等了。https://nbic9m6bm.fte71p5261.com/f/Y2Kk6rjki4