高一物理运动学知识点总结
发布网友
发布时间:2023-07-12 00:55
我来回答
共1个回答
热心网友
时间:2023-07-12 18:41
1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.
2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。
3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量.
路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程.
4.速度和速率
(1)速度:描述物体运动快慢的物理量.是矢量.
①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述.
②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.
(2)速率:①速率只有大小,没有方向,是标量.
②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等.
5.加速度
(1)加速度是描述速度变化快慢的物理量,它是矢量.加速度又叫速度变化率.
(2)定义:在匀变速直线运动中,速度的变化Δv跟发生这个变化所用时间Δt的比值,叫做匀变速直线运动的加速度,用a表示.
(3)方向:与速度变化Δv的方向一致.但不一定与v的方向一致.
【二】
6.匀速直线运动(1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直线运动.
(2)特点:a=0,v=恒量.(3)位移公式:S=vt.
7.匀变速直线运动(1)定义:在任意相等的时间内速度的变化相等的直线运动叫匀变速直线运动.
(2)特点:a=恒量(3)公式:速度公式:V=V0+at位移公式:s=v0t+at2
速度位移公式:vt2-v02=2as平均速度V=
以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值.
8.重要结论
(1)匀变速直线运动的质点,在任意两个连续相等的时间T内的位移差值是恒量,即
ΔS=Sn+l–Sn=aT2=恒量
(2)匀变速直线运动的质点,在某段时间内的中间时刻的瞬时速度,等于这段时间内的平均速度,即:
9.自由落体运动
(1)条件:初速度为零,只受重力作用.(2)性质:是一种初速为零的匀加速直线运动,a=g.
(3)公式:
10.运动图像
(1)位移图像(s-t图像):①图像上一点切线的斜率表示该时刻所对应速度;
②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动;
③图像与横轴交叉,表示物体从参考点的一边运动到另一边.
(2)速度图像(v-t图像):①在速度图像中,可以读出物体在任何时刻的速度;
②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值.
③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率.
④图线与横轴交叉,表示物体运动的速度反向.
⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动.
【三】
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
7.质点动力学有两类基本问题:一是已知貭点的运动,求作用于质点上的力,二是已知作用于质点上的力,求质点的运动
8.动力学的基本内容包括质点动力学、质点系动力学、刚体动力学、达朗贝尔原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论,陀螺力学、外弹道学、变质量力学,以及正在发展中的多刚体系统动力学、晶体动力学等。
9.质点动力学有两类基本问题:一是已知质点的运动,求作用于质点上的力;二是已知作用于质点上的力,求质点的运动。