发布网友 发布时间:2022-03-27 13:50
共2个回答
懂视网 时间:2022-03-27 18:11
全连接层的作用如下:
1、首先全连接层(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。
2、其次目前由于全连接层参数冗余(仅全连接层参数就可占整个网络参数80%左右),近期一些性能优异的网络模型如ResNet和GoogLeNet等均用全局平均池化(global average pooling,GAP)取代FC来融合学到的深度特征,最后仍用softmax等损失函数作为网络目标函数来指导学习过程。需要指出的是,用GAP替代FC的网络通常有较好的预测性能。
3、最后FC可在模型表示能力迁移过程中充当“防火墙”的作用。
连接层,又称为数据链路层(Data Link),或称为网络介质层(Network In-terface),也就是网络的基础建设,广泛应用于通信网的安全技术中,处理通信与授权控制的核心协议。可在以太网(Ethernet)、光纤(Fiber)、无线网络(Wireless)、帧传送(Frame Relay)或点对点(PPP)物理网络中为网络层提供数据传送服务,连接层最重要的任务在于传送及接收物理层所传送的光电信号。
热心网友 时间:2022-03-27 15:19
卷积神经网络用全连接层的参数确定:卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。
它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。
输入层
卷积神经网络的输入层可以处理*数据,常见地,一维卷积神经网络的输入层接收一维或二维数组,其中一维数组通常为时间或频谱采样;二维数组可能包含多个通道;二维卷积神经网络的输入层接收二维或三维数组;三维卷积神经网络的输入层接收四维数组。
由于卷积神经网络在计算机视觉领域应用较广,因此许多研究在介绍其结构时预先假设了三维输入数据,即平面上的二维像素点和RGB通道。