发布网友 发布时间:2022-04-25 05:20
共1个回答
热心网友 时间:2023-10-29 13:00
一、教学内容解析本节课是在学习了解了圆的一些相关概念的基础上利用圆的轴对称性探索垂径定理及其逆定理,然后根据对称图形的性质和推理证明的方法进行证明。通过本节课的学习,学生能通过折叠,体会圆的对称性,理解并掌握垂直于弦的直径的性质,经历感受圆的对称性在实际生活中的实用价值,增强学生应用数学和意识,发展为学生的思维能力。对垂径定理及其推论的学习,为下一节学习弧、弦、圆心角以及有关弦的计算和证明题有着非常重要的作用。二、教学目标设置知识和能力 1.探索圆的对称性,进而得到垂直于弦的直径所具有的性质。2.能够利用垂直于弦的直径的性质解决相关实际问题。过程和方法 1.在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,体会圆的一些性质,经历探索圆的对称性及相关性质的过程。2.进一步体会和理解研究几何图形的各种方法;培养学生独立探索,相互合作交流的精神。情感态度价值观 使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神。教学重点 垂直于弦的直径所具有的性质以及证明。教学难点 利用垂直于弦的直径的性质解决实际问题。教学准备 教师 多媒体课件学生纸、剪刀三、学生学情分析对于九年级学生而言,其实他们在第一、二学段已积累了一些对圆的认识,甚至也了解了圆的一些性质,也学过其它几何图形,经历过探究其它图形的学习过程,所以相对而言学习了解圆就有了一定的经验和能力,但是由于目前农村中学优生流失较为严重,大部分是中下游的学生,他们分折和探究问题的水平很低,因此在分折概括,推理论证垂径定理时是有一定困难的。四、教学策略分析以学生现有的经验知识为基础引入新课,让学生先观察几组以前尝过的对称图形,并了解它们的性质,然后让学生动手折叠圆,并观察得出圆的性质—轴对称性,再从圆是轴对称图形入手,根据轴对称图形的性质得出对称轴垂直平分对称点的连线,相对应的部分一定重合,即“垂直于弦的直径平分弦且平分弦所对的弧”,这里尽量再结合课件的演示,让学生在观察、探究、交流的过程中体会知识的形成。五、教学过程(一)复习旧知问题情境,激发学生兴趣师:观察下列几个图形,它们有何共同点?等腰梯形长方形等腰三角形用什么方法可以判断图形是轴对称图形?(引导出折叠的方法)(二)新课引入活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质)学生活动设计:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.教师活动设计:在学生归纳的过程中注意学生语言的准确性和简洁性.(三)问题引申,探究垂直于弦的直径的性质活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B,如图1.图1图2在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?(课件:探究垂径定理)学生活动设计:如图2所示,连接OA、OB,得到等