发布网友 发布时间:2023-07-26 21:44
共1个回答
热心网友 时间:2024-11-30 20:30
1. Z. Chen and R. Kulperger, Minimax pricing and Choquet pricing, to appear Insurance: Mathematics and Economics , 2005.
2. Z. Chen and R. Kulperger, A stochastic competing species model and ergodicity, to appear Journal of Applied Probability, 2005.
3. Z. Chen and R. Kulperger, Inequalities for upper and lower probabilities. Statist. Probab. Lett. Vol 73, 3(2005) 233-241.
4. Z. Chen, T. Chen and M. Davison, Choquet expectation and Peng’s g-expectation. Annals of Probability, Vol.33, No. 3 (2005) 1179-1199.
5. Z. Chen, R. Kulperger and G. Wei, A comonotonic theorem for BSDEs. Stochastic processes and their applications. 115 (2005) 41–54.
6. L. Jiang and Z. Chen, A result on the probability measures dominated by g-expectation. Acta Mathematicae Applicatae Sinica, English Series,Vol. 20, No. 3 (2004) 507–512.
7. L. Jiang and Z. Chen, ON Jensen’s inequality for g-expectation. Chin. Ann. Math. 25B, 3 (2004), 401–412.
8. Z. Chen, R. Kulperger and J. Long, Jensen’s inequality for g-expectations Part I. C. R. Acad. Sci. Paris Sér. I Math. 337 (2003), No.11, 725-730.
9. Z. Chen, R. Kulperger and J. Long, Jensen’s inequality for g-expectations Part II. C. R. Acad. Sci. Paris Sér. I Math. 337 (2003), No. 12.
10. Z. Chen and L. Epstein, Ambiguity, risk, and asset returns in continuous time. Econometrica 70 (2002), No. 4, 1403—1443.
11. Z. Chen, On existence and local stability of solutions of stochastic differential equations. Stochastic Anal. Appl. 19 (2001), No. 5, 703--714.
12. Z. Chen and S. Peng, Continuous properties of $G$-martingales. Chinese Ann. Math. Ser. B 22 (2001), No. 1, 115--128.
13. Z. Chen and B. Wang, Infinite time interval BSDEs and the convergence of g-martingales. J. Austral. Math. Soc. Ser. A 69 (2000), No. 2, 187--211.
14. Z. Chen and S. Peng, A general downcrossing inequality for g-martingales. Statist. Probab. Lett. 46 (2000), no. 2, 169--175.
15. Z. Chen, A property of backward stochastic differential equations. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 4, 483--488.
16. Z. Chen, A new proof of Doob-Meyer decomposition theorem. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 10, 919--924.
17. Z. Chen, Existence and uniqueness for BSDE with stopping time. Chinese Sci. Bull. 43 (1998), no. 2, 96--99.
18. Z. Chen and S. Peng, A decomposition theorem of g-martingales. SUT J. Math. 34 (1998), no. 2, 197—208
19. L. Jun, Z. Chen and Y. Qing, Minimum expectation and backward stochastic differential equations. (Adv. Math) 数学进展,32 (2003), 441—448.
20. Z. Chen and X. Wang, Comonotonicity of backward stochastic differential equations. Recent developments in mathematical finance (Shanghai, 2001), 28--38, World Sci. Publishing, River Edge, NJ, 2002.
21. Z. Chen, Generalized nonlinear mathematical expectations: the g-expectations. (Adv. Math.) 数学进展 28 (1999), no. 2, 175—180
22. Z. Chen, Existence of solutions to backward stochastic differential equations with stopping times. 科学通报42 (1997), no. 22, 2379--2382