发布网友 发布时间:2023-07-23 00:58
共1个回答
热心网友 时间:2023-10-03 07:12
图形的对称轴是一条直线,它没有起点没有终点,是向两边无限延长的直线。对称轴上的任意一点与对称点的距离相等;对称点所连线段被对称轴垂直平分。两个图形如果关于某直线轴对称,那么这两个图形是全等图形。
对称轴
对称轴,数学名词,是指使几何图形成轴对称或旋转对称的直线。对称图形的一部分绕它旋转一定的角度后,就与另一部分重合。 许多图形都有对称轴。例如椭圆、双曲线有两条对称轴,抛物线有一条。正圆锥或正圆柱的对称轴是过底面圆心与顶点或另一底面圆心的直线。
常见轴对称图形
几种常见的轴对称图形和中心对称图形:
轴对称图形:线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆、双曲线(有两条对称轴)、椭圆(有两条对称轴)、抛物线(有一条对称轴)等。
对称轴的条数:角有一条对称轴,即该角的角平分线所在的直线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对称轴分别是两组对边中点的直线;
中心对称图形:线段 、平行四边形、菱形、矩形、正方形、圆等。
对称中心:线段的对称中心是线段的中点;平行四边形、菱形、矩形、正方形的对称中心是对角线的交点;圆的对称中心是圆心。
说明:线段、菱形、矩形、正方形以及圆它们即是轴对称图形又是中心对称图形。
坐标系中的轴对称变换与中心对称变换:
点P(x,y)关于x轴对称的点P₁的坐标为(x,-y),关于y轴对称的点P₂的坐标为(-x,y)。关于原点对称的点的坐标P3的坐标是(-x,-y)这个规律也可以记为:关于y轴(x轴)对称的点的纵坐标(横坐标)相同,横坐标(纵坐标)互为相反数。 关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以-1。