发布网友 发布时间:2023-07-29 18:54
共1个回答
热心网友 时间:2024-08-10 16:08
计算公式如下:
[r(t)]^2=[x(t)]^2+[y(t)]^2=a^2(cost)^6+a^2(sint)^6
=a^2[(cost)^2+(sint)^2][(cost)^4+(sint)^4-(cost)^2(sint)^2]
=a^2[1-3(cost)^2(sint)^2]
所以面积
S=(1/2)∫[r(t)]^2dt
=(1/2)∫(0->2π) a^2[1-3(cost)^2(sint)^2]dt
=5πa^2/8
拓展资料:
星形线是内摆线的一种。
星形线(astroid)或称为四尖瓣线(tetracuspid),是一个有四个尖点的内摆线,也属于超椭圆的一种。
其英文名称得名自希腊文的星星,星形线几乎和椭圆的渐屈线相同。
若让一个半径为1/4的圆在一个半径为1的圆内部,延著圆的圆周旋转,小圆圆周上的任一点形成的轨迹即为星形线。
参考资料:百度百科-星形线