函数的取值范围
发布网友
发布时间:2023-07-27 16:17
我来回答
共3个回答
热心网友
时间:2024-11-24 23:49
方法一:
y=[(x-1/2)+2a+1/2]/(2x-1)=1/2+(2a+1/2)/(2x-1)。
∴在区间(1/2,+∞)上,2x-1>0,且随x的增大而增大。
∴要使y在此区间为增函数,就需要2a+1/2<0,∴2a<-1/2,∴a<-1/4。
∴满足条件的a的取值范围是(-∞,-1/4)。
方法二:
∵y=(x+2a)/(2x-1),
∴y′=[(2x-1)-2(x+2a)]/(2x-1)^2=-(2a+1)/(2x-1)^2。
令y′>0,得:-(4a+1)/(2x-1)^2>0,∴4a+1<0,∴4a<-1,∴a<-1/4。
∴满足条件的a的取值范围是(-∞,-1/4)。
热心网友
时间:2024-11-24 23:49
1。如果你学习了导数,那么这么作:y'=(-1-4a)/(2x-1)^2>0在(1/2,+无穷)上恒成立,
所以a<-1/4
2。如果你没有学习导数,那么这么作:y=1/2+(2a+1/2)/2x-1,则2a+1/2<0,所以a<-1/4
热心网友
时间:2024-11-24 23:50
分离常数后,分子小于0