问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

求高一数学定理公式,越全越好,兄弟我先谢谢各位前辈勒!

发布网友 发布时间:2022-04-26 09:26

我来回答

4个回答

热心网友 时间:2022-06-26 17:49

两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
乘法与因式分 a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
降幂公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
(以上k∈Z)
注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
奇变偶不变,符号看象限。
同角三角函数基本关系
同角三角函数的基本关系式
倒数关系:
tanα •cotα=1
sinα •cscα=1
cosα •secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
两角和差公式
两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)
二倍角公式
二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/[1-tan^2(α)]
半角公式
半角的正弦、余弦和正切公式(降幂扩角公式)
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)
万能公式
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
万能公式推导
附推导:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因为cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
和差化积公式
三角函数的和差化积公式
sinα+sinβ=2sin[(α+β)/2]•cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]•sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]•cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]•sin[(α-β)/2]
积化和差公式
三角函数的积化和差公式
sinα •cosβ=0.5[sin(α+β)+sin(α-β)]
cosα •sinβ=0.5[sin(α+β)-sin(α-β)]
cosα •cosβ=0.5[cos(α+β)+cos(α-β)]
sinα •sinβ=-0.5[cos(α+β)-cos(α-β)]
和差化积公式推导
附推导:
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
0度
sina=0,cosa=1,tana=0
30度
sina=1/2,cosa=√3/2,tana=√3/3
45度
sina=√2/2,cosa=√2/2,tana=1
60度
sina=√3/2,cosa=1/2,tana=√3
90度
sina=1,cosa=0,tana不存在
120度
sina=√3/2,cosa=-1/2,tana=-√3
150度
sina=1/2,cosa=-√3/2,tana=-√3/3
180度
sina=0,cosa=-1,tana=0
270度
sina=-1,cosa=0,tana不存在
360度
sina=0,cosa=1,tana=0
等比数列公式
  如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。
  (1)等比数列的通项公式是:An=A1×q^(n-1)
  若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
  (2) 任意两项am,an的关系为an=am•q^(n-m)
  (3)从等比数列的定义、通项公式、前n项和公式可以推出: a1•an=a2•an-1=a3•an-2=…=ak•an-k+1,k∈{1,2,…,n}
  (4)等比中项:aq•ap=ar^2,ar则为ap,aq等比中项。
  记πn=a1•a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
  另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
  性质:
  ①若 m、n、p、q∈N*,且m+n=p+q,则am•an=ap•aq;
  ②在等比数列中,依次每 k项之和仍成等比数列.
  “G是a、b的等比中项”“G^2=ab(G≠0)”.
  (5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)或Sn=(a1-an*q)/(1-q)(q≠1) Sn=n*a1 (q=1)
  在等比数列中,首项A1与公比q都不为零.
  注意:上述公式中A^n表示A的n次方。
  等比数列在生活中也是常常运用的。
  如:银行有一种支付利息的方式---复利。
  即把前一期的利息和本金加在一起算作本金,
  再计算下一期的利息,也就是人们通常说的利滚利。
  按照复利计算本利和的公式:本利和=本金*(1+利率)^存期
等差数列公式
  等差数列的通项公式为:an=a1+(n-1)d
  或an=am+(n-m)d
  前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2
  若m+n=p+q则:存在am+an=ap+aq
  若m+n=2p则:am+an=2ap
  以上n均为正整数
  文字翻译
  第n项的值=首项+(项数-1)*公差
  前n项的和=(首项+末项)*项数/2
  公差=后项-前项
对称数列公式
  对称数列的通项公式:
  对称数列总的项数个数:用字母s表示
  对称数列中项:用字母C表示
  等差对称数列公差:用字母d表示
  等比对称数列公比:用字母q表示
  设,k=(s+1)/2
一般数列的通项求法
  一般有:
  an=Sn-Sn-1 (n≥2)
  累和法(an-an-1=... an-1 - an-2=... a2-a1=...将以上各项相加可得an)。
  逐商全乘法(对于后一项与前一项商中含有未知数的数列)。
  化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。
  特别的:
  在等差数列中,总有Sn S2n-Sn S3n-S2n
  2(S2n-Sn)=(S3n-S2n)+Sn
  即三者是等差数列,同样在等比数列中。三者成等比数列
  不动点法(常用于分式的通项递推关系)
特殊数列的通项的写法
  1,2,3,4,5,6,7,8....... ---------an=n
  1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......-------an=1/n
  2,4,6,8,10,12,14.......-------an=2n
  1,3,5,7,9,11,13,15.....-------an=2n-1
  -1,1,-1,1,-1,1,-1,1......--------an=(-1)^n
  1,-1,1,-1,1,-1,1,-1,1......--------an=(-1)^(n+1)
  1,0,1,0,1,0,1,01,0,1,0,1....------an=[(-1)^(n+1)+1]/2
  1,0,-1,0,1,0,-1,0,1,0,-1,0......-------an=cos(n-1)π/2=sinnπ/2
  9,99,999,9999,99999,......... ------an=(10^n)-1
  1,11,111,1111,11111.......--------an=[(10^n)-1]/9
  1,4,9,16,25,36,49,.......------an=n^2
  1,2,4,8,16,32......--------an=2^(n-1)
数列前N项和公式的求法
  (一)1.等差数列:
  通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数
  an=ak+(n-k)d ak为第k项数
  若a,A,b构成等差数列 则 A=(a+b)/2
  2.等差数列前n项和:
  设等差数列的前n项和为Sn
  即 Sn=a1+a2+...+an;
  那么 Sn=na1+n(n-1)d/2
  =dn^2(即n的2次方) /2+(a1-d/2)n
  还有以下的求和方法: 1,不完全归纳法 2 累加法 3 倒序相加法
  (二)1.等比数列:
  通项公式 an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项
  an=a1*q^(n-1),am=a1*q^(m-1)
  则an/am=q^(n-m)
  (1)an=am*q^(n-m)
  (2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)
  (3)若m+n=p+q 则 am×an=ap×aq
  2.等比数列前n项和
  设 a1,a2,a3...an构成等比数列
  前n项和Sn=a1+a2+a3...an
  Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推导的,这时可能要直接从基本公式推导过去,所以希望这个公式也要理解)
  Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);
  注: q不等于1;
  Sn=na1 注:q=1
  求和一般有以下5个方法: 1,完全归纳法(即数学归纳法) 2 累乘法 3 错位相减法 4 倒序求和法 5 裂项相消法

热心网友 时间:2022-06-26 17:50

高一的数学定理公式基本上就是下面这些了
公式很多,但是实际上用到的很少,楼主看到有用的就记下来吧

两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式
sin(A/2)=√[(1-cosA)/2]
sin(A/2)=-√[(1-cosA)/2]
cos(A/2)=√[(1+cosA)/2]
cos(A/2)=-√[((1+cosA)/2]
tan(A/2)=√[(1-cosA)/((1+cosA)]
tan(A/2)=-√[(1-cosA)/((1+cosA)]
ctg(A/2)=√[(1+cosA)/((1-cosA)]
ctg(A/2)=-√[(1+cosA)/((1-cosA)]

和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]
cosA+cosB=2cos[(A+B)/2]sin[(A-B)/2]
tanA+tanB=sin(A+B)/(cosAcosB )
tanA-tanB=sin(A-B)/(cosAcosB )
ctgA+ctgBsin(A+B)/(sinAsinB)
-ctgA+ctgBsin(A+B)/(sinAsinB )

某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理
a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理
b2=a2+c2-2accosB
注:角B是边a和边c的夹角

弧长公式
l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

乘法与因式分
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)

三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|
-|a|≤a≤|a|

一元二次方程的解
x1=[ -b+√(b2-4ac)]/2a
x2=[ -b-√(b2-4ac)]/2a

根与系数的关系
X1+X2=-b/a
X1*X2=c/a
注:韦达定理

判别式
b2-4ac=0
注:方程有两个相等的实根
b2-4ac>0
注:方程有两个不等的实根
b2-4ac<0
注:方程没有实根,有共轭复数根

降幂公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2

万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)

热心网友 时间:2022-06-26 17:50

立体几何基本课题
包括:
- 面和线的重合
- 两面角和立体角
- 方块, 长方体, 平行六面体
- 四面体和其他棱锥
- 棱柱
- 八面体, 十二面体, 二十面体
- 圆锥,圆柱
- 球
- 其他二次曲面: 回转椭球, 椭球, 抛物面 ,双曲面
公理
立体几何中有4个公理
公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2 过不在一条直线上的三点,有且只有一个平面.
公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4 平行于同一条直线的两条直线平行.
立方图形
立体几何公式
名称 符号 面积S 体积V
正方体 a——边长 S=6a^2 V=a^3
长方体 a——长 S=2(ab+ac+bc) V=abc
b——宽
c——高
棱柱 S——底面积 V=Sh
h——高
棱锥 S——底面积 V=Sh/3
h——高
棱台 S1和S2——上、下底面积 V=h〔S1+S2+√(S1^2)/2〕/3
h——高
拟柱体 S1——上底面积 V=h(S1+S2+4S0)/6
S2——下底面积
S0——中截面积
h——高
圆柱 r——底半径 C=2πr V=S底h=∏rh
h——高
C——底面周长
S底——底面积 S底=πR^2
S侧——侧面积 S侧=Ch
S表——表面积 S表=Ch+2S底
S底=πr^2
空心圆柱 R——外圆半径
r——内圆半径
h——高 V=πh(R^2-r^2)
直圆锥 r——底半径
h——高 V=πr^2h/3
圆台 r——上底半径
R——下底半径
h——高 V=πh(R^2+Rr+r^2)/3
球 r——半径
d——直径 V=4/3πr^3=πd^2/6
球缺 h——球缺高
r——球半径
a——球缺底半径 a^2=h(2r-h) V=πh(3a^2+h^2)/6 =πh2(3r-h)/3
球台 r1和r2——球台上、下底半径
h——高 V=πh[3(r12+r22)+h2]/6
圆环体 R——环体半径
D——环体直径
r——环体截面半径
d——环体截面直径 V=2π^2Rr^2 =π^2Dd^2/4
桶状体 D——桶腹直径
d——桶底直径
h——桶高 V=πh(2D^2+d2^)/12 (母线是圆弧形,圆心是桶的中心)
V=πh(2D^2+Dd+3d^2/4)/15 (母线是抛物线形)

平面解析几何包含一下几部分
一 直角坐标
1.1 有向线段
1.2 直线上的点的直角坐标
1.3 几个基本公式
1.4 平面上的点的直角坐标
1.5 射影的基本原理
1.6 几个基本公式
二 曲线与议程
2.1 曲线的直解坐标方程的定义
2.2 已各曲线,求它的方程
2.3 已知曲线的方程,描绘曲线
2.4 曲线的交点
三 直线
3.1 直线的倾斜角和斜率
3.2 直线的方程
Y=kx+b
3.3 直线到点的有向距离
3.4 二元一次不等式表示的平面区域
3.5 两条直线的相关位置
3.6 二元二方程表示两条直线的条件
3.7 三条直线的相关位置
3.8 直线系
四 圆
4.1 圆的定义
4.2 圆的方程
4.3 点和圆的相关位置
4.4 圆的切线
4.5 点关于圆的切点弦与极线
4.6 共轴圆系
4.7 平面上的反演变换
五 椭圆
5.1 椭圆的定义
5.2 用平面截直圆锥面可以得到椭圆
5.3 椭圆的标准方程
5.4 椭圆的基本性质及有关概念
5.5 点和椭圆的相关位置
5.6 椭圆的切线与法线
5.7 点关于椭圆的切点弦与极线
5.8 椭圆的面积
六 双曲线
6.1 双曲线的定义
6.2 用平面截直圆锥面可以得到双曲线
6.3 双曲线的标准方程
6.4 双曲线的基本性质及有关概念
6.5 等轴双曲线
6.6 共轭双曲线
6.7 点和双曲线的相关位置
6.8 双曲线的切线与法线
6.9 点关于双曲线的切点弦与极线
七 抛物线
7.1 抛物线的定义
7.2 用平面截直圆锥面可以得到抛物线
7.3 抛物线的标准方程
7.4 抛物线的基本性质及有关概念
7.5 点和抛物线的相关位置
7.6 抛物线的切线与法线
7.7 点关于抛物线的切点弦与极线
7.8 抛物线弓形的面积
八 坐标变换·二次曲线的一般理论
8.1 坐标变换的概念
8.2 坐标轴的平移
8.3 利用平移化简曲线方程
8.4 圆锥曲线的更一般的标准方程
8.5 坐标轴的旋转
8.6 坐标变换的一般公式
8.7 曲线的分类
8.8 二次曲线在直角坐标变换下的不变量
8.9 二元二次方程的曲线
8.10 二次曲线方程的化简
8.11 确定一条二次曲线的条件
8.12 二次曲线系
九 参数方程
十 极坐标
十一 斜角坐biao

热心网友 时间:2022-06-26 17:51

是高一的
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
填地方专项志愿会影响本科二批录取吗? 地方专项计划成绩不好的可以报吗 国家专项地方专项影响本科填报吗 地方专项计划滑档影响本科录取吗 报地方专项计划会影响高考录取吗 地方专项计划影响后续录取吗 电脑最高配组装机配置组装电脑什么配置比较好 台式组装游戏电脑配置组装电脑什么配置比较好 打游戏主机电脑配置台式电脑主要是玩游戏什么配置最合适 组装高配置台式电脑组装电脑什么配置比较好 高一数学公式总结 求高一数学所有公式定理! 屈臣氏可以用京东白条支付吗 泡泡玛特门店可不可以用京东白条现场支付 耐克实体店可以用京东白条吗 中百罗森可以用京东白条支付吗 戴什么增加财运 属马的人配带什么使财运好 偏财最灵验的招财法戴什么好 戴什么水晶旺事业旺财运? 带什么手链可以提高自己的财运 男人带什么手链可以提升运气财运? 命中带什么什么财运很旺 偏财运,带什么最好 想要招正财和偏财应该带什么样的水晶?? 佩戴什么才能旺事业旺财运 笔记本电脑可以换CPU吗?? 诺贝尔种植体大家知道么? 诺贝尔种植牙和ITI种植牙哪个更好 瑞典诺贝尔种植系统的种类 高一数学能用到的定理和公式 高一数学公式 高中数学 公式定理归纳 要全急急急 数学高一公式 高中数学公式定理归纳 谁能给我讲高中数学公式定理?O(∩_∩)O 高一数学所有公式,写在纸上照下来发给我,谢谢 高中数学重要定理有哪些? 请问一下高一数学全部的定理公式 求初高中数学公式 定理 落地成双小鹿在哪里直播 小鹿同学在哪里直播 软胜天下的直播系统比小鹿直播和云豹直播好吗??? 什么APP能看单机游戏视频? 衣服上有油渍很长时间了,老是洗不干净,如何才能彻底清除干净? 长期在衣服上的油渍怎样除去? 拼多多砍价互砍软件有吗? 拼夕夕的砍价免费拿活动是真的假的? 我很反感拼多多?为什么越来越多的人手机上卸载了拼夕夕?拼夕夕无耻程度远远超过当初的淘※。一、拼夕夕_百度问一问 律师起诉“拼夕夕”诈骗,免费始终差0.09%,拼多多砍价存在哪些套路?