关于数学的所有知识
发布网友
发布时间:2022-04-26 09:04
我来回答
共1个回答
热心网友
时间:2022-06-26 08:34
“O”的自述
人人都轻视我,认为我可有可无、有时读数不读我,有时计算中一笔把我划掉。可你们知道吗?我也有许多实实在在的意义。
1.我表示“没有”。在数物体时,如果没有任何物体可数,就要用我来表示。
2.我有占数位的作用。记数时,如果数的某一数位上一个单位也没有,就用我来占位。比如:1080中百位、个位上一个单位也没有就用:0来占位。
3.我表示起点。直尺、秤的起点都是用我来表示的。
4.我表示界限。温度计上,我的上边叫“零上”,我的下边叫“零下”。
5.我可以表示不同的精确度。在近似计算中,小数部分末尾的我可不能随便划去。如:7.00、7.0、7的精确度是不同的。
6.我不能做除数。让我做除数可就麻烦了,因为我做除数是没有意义的。
以后你们还会学到我的很多特殊性质、小朋友,请你不要看不起我。
为什么电子计算机要用二进位制
由于人的双手有十个手指,人类发明了十进位制记数法。然而,十进位制和电子计算机却没有天然的联系,所以在计算机的理论和应用中难以畅通无阻。究竟为什么十进位制和计算机没有天然的联系?和计算机联系最自然的记数方法又是什么呢?
这要从计算机的工作原理说起。计算机的运行要靠电流,对于一个电路节点而言,电流通过的状态只有两个:通电和断电。计算机信息存储常用硬磁盘和软磁盘,对于磁盘上的每一个记录点而言,也只有两个状态:磁化和未磁化。近年来用光盘记录信息的做法也越来越普遍,光盘上海一个信息点的物理状态有两个:凹和凸,分别起着聚光和散光的作用。由此可见,计算机所使用的各种介质所能表现的都是两种状态,如果要记录十进位制的一位数,至少要有四个记录点(可有十六个信息状态),但此时又有六个信息状态闲置,这势必造成资源和资金的大量浪费。因此,十进位制不适合于作为计算机工作的数字进位制。那么该用什么样的进位制呢?人们从十进位制的发明中得到启示:既然每种介质都是具有两个状态的,最自然的进位制当然是二进位制。
二进位制所需要的记数的基本符号只要两个,即0和1。可以用1表示通电,0表示断电;或1表示磁化,0表示未磁化;或1表示凹点,0表示凸点。总之,二进位制的一个数位正好对应计算机介质的一个信息记录点。用计算机科学的语言,二进位制的一个数位称为一个比特(bit),8个比特称为一个字节(byte)。
二进位制在计算机内部使用是再自然不过的。但在人机交流上,二进位制有致命的弱点——数字的书写特别冗长。例如,十进位制的100000写成二进位制成为11000011010100000。为了解决这个问题,在计算机的理论和应用中还使用两种辅助的进位制——八进位制和十六进位制。二进位制的三个数位正好记为八进位制的一个数位,这样,数字长度就只有二进位制的三分之一,与十进位制记的数长度相差不多。例如,十进位制的100000写成八进位制就是303240。十六进位制的一个数位可以代表二进位制的四个数位,这样,一个字节正好是十六进位制的两个数位。十六进位制要求使用十六个不同的符号,除了0—9十个符号外,常用A、B、C、D、E、F六个符号分别代表(十进位制的)10、11、12、13、14、15。这样,十进位制的100000写成十六进位制就是186A0。
二进位制和八进位制、二进位制和十六进位制之间的换算都十分简便,而采用八进位制和十六进位制又避免了数字冗长带来的不便,所以八进位制、十六进位制已成为人机交流中常用的记数法。
为什么时间和角度的单位用六十进位制
时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系。可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢?
我们仔细研究一下,就知道这两种量是紧密联系着的。原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了。譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。因为历法需要的精确度较高,时间的单位“小时”、角度的单位“度”都嫌太大,必须进一步研究它们的小数。时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、1/6等都能成为它的整数倍。以1/60作为单位,就正好具有这个性质。譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60……
数学上习惯把这个1/60的单位叫做“分”,用符号“′”来表示;把1分的1/60的单位叫做“秒”,用符号“〃”来表示。时间和角度都用分、秒作小数单位。
这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。
这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天。
长度单位的自述
一天,长度单位的弟兄们到一起开会,主持会议的是“公里”老大哥,它首先发了言:“我们长度等单位是个国际大家庭,今天来参加会的是我们大家庭中的少数派,人们对我们非常生疏,因此,我们先作一下自我介绍。”首先从会场*站起来一个说道:“我叫‘引’,是中国籍的单位长度,中国古代《汉书:律历志上》有我的名字,所以我的年龄很大啦!是中国籍古时十丈为一引,今为‘市引’的简称,1公里(千米)=30(市)引。”说完就坐下了。接着从会议室一个角落站起一个“单位”大声喊道:“我叫‘码’,是英籍长度单位.英语‘yard’的译名,1码=3英尺,1英里=1760码。与公制及市制的关系是:1码=0.9144米=2.743市尺。”“码”发言完后,就一个接一个的说开了。“我叫‘节’,我是无国籍‘人士’,也可以说,每一国都是我的国籍,因为我是国际通用的航海速度单位,也可用于度量水流速度和水中兵器(如鱼雷)的速度。我是离不开长度的,海里是我的爸爸,小时是我的妈妈。1节=1海里/小时,例如,某船相对于静止水面的速度为15海里/小时,那么它的航速就是15节”.“我叫‘链’,生长在海上,是海上计量短距离的一种专用单位,我是一海里的十分之一。”“我的名字大约谁也没听说过吧!我叫‘浔’;海洋测量中计量水深的专用单位,也可以说是无国籍人士,1浔=1/100链=1/1000海里=1.852米。”“我叫‘町’,是日本籍,也是一种长度单位,是国际长度等单位大家庭中的一员,只是我的面孔怪僻。所以大家见的不多(町=1/36日里,1公里=9.167町=0.2546日里)。”大家发言完后,“公里”说:“很好!我们初次见面,大家认识了一下,我们快回各自的岗位吧!继续发挥我们各自的伟大作用。”
人身上的“尺子”
你知道吗?我们每个人身上都携带着几把尺子。假如你“一拃”的长度为8厘米,量一下你课桌的长为7拃,则可知课桌长为56厘米。如果你每步长65厘米,你上学时,数一数你走了多少步,就能算出从你家到学校有多远。身高也是一把尺子。如果你的身高是150厘米,那么你抱住一棵大树,两手正好合拢,这棵树的一周的长度大约是150厘米。因为每个人两臂平伸,两手指尖之间的长度和身高大约是一样的。要是你想量树的高,影子也可以帮助你的。你只要量一量树的影子和自己的影子长度就可以了。因为树的高度=树影长×身高÷人影长。这是为什么?等你学会比例以后就明白了。你若去游玩,要想知道前面的山距你有多远,可以请声音帮你量一量。声音每秒能走331米,那么你对着山喊一声,再看几秒可听到回声,用331乘听到回声的时间,再除以2就能算出来了。学会用你身上这几把尺子,对你计算一些问题是很有好处的。同时,在你的日常生活中,它也会为你提供方便的。你可要想着它呀!
阿拉伯数字
在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?
这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。
现在,阿拉伯数字已成了全世界通用的数字符号。
九 九 歌
九九歌就是我们现在使用的乘法口诀。
远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。
现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。
数学符号的起源
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。
数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。
"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。
"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。
也有人说,卖酒的商人用"-"表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在"-"上加一竖,意思是把原线条勾销,这样就成了个"+"号。
到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。
乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。
"÷"最初作为减号,在欧洲*长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。
平方根号曾经用拉丁文"Radix"(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用"√"表示根号。"r"是由拉丁字线"r"变,"--"是括线。
十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。
大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。
世界杯中的数学问题
当韩日世界杯进行得如火如荼的时候,大家有没有发现世界杯中有许多数学问题。不信,你往下看。
在世界杯小组赛上,每四个队进行单循环比赛,每场比赛胜队得3分,负队得0分,平局两队各得1分。小组赛结束后,总积分高的两队出线,进入下一轮比赛。如果总积分相同,还要按进一步的规则排序。
问题一:
一个队为了晋级下一轮,至少要积几分才能保证必然出线?
4个队单循环赛要赛6场,每场比赛最多产生3分,6场比赛最多产生18分。
若某队积6分,则剩下12分,可能有另两个队也各得6分,这样就要按进一步规则排序,因此该队有可能不出线。
我想出来了:若一个队积7分,则剩下11分,这样另外三个队中不可能再有两个队积分等于或者超过7分,这样该队必然出线。因此一个队为了晋级下一轮,至少要积分7分才能保证必然出线。
问题二:
一个队只积3分,这个队有可能出线吗?
有可能。6场比赛都是平局,4个队都只得了3分,按进一步规则排序,该队如果处于前两位,就有可能出线。
还有一种情况,大家能想出来吗?
想一想:(1)一个球队积5分,该队能出线吗?为什么?
(2)一个球队积2分,该队能出线吗?为什么?
小朋友,你们在观看世界杯比赛的过程中,有没有想过这些问题呢?其实,生活中数学无处不在,只要大家留心观察,你会有不小的收获的。