发布网友 发布时间:2022-04-20 21:47
共3个回答
热心网友 时间:2023-07-10 00:02
协方差的性质:
1、Cov(X,Y)=Cov(Y,X);
2、Cov(aX,bY)=abCov(X,Y),(a,b是常数);
3、Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。
由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。
协方差函数定义为:
若X(t)=Y(t)+i*Z(t),Y,Z为实过程,则称X(t)为复随机过程,相关函数定义为:
扩展资料
协方差反映了两个变量之间的相关程度:
协方差是两个变量与自身期望做差再相乘,然后对乘积取期望。也就是说,当其中一个变量的取值大于自身期望,另一个变量的取值也大于自身期望时,即两个变量的变化趋势相同,此时,两个变量之间的协方差取正值。
反之,即其中一个变量大于自身期望时,另外一个变量小于自身期望,那么这两个变量之间的协方差取负值。
当x与y变化趋势一致时,两个变量与自身期望之差同为正或同为负,其乘积必然为正,所以其协方差为正;反之,其协方差为负。所以协方差的正负性反映了两个变量的变化趋势是否一致。
再者,当x和y在某些时刻变化一致,某些时刻变化不一致时,在第一个点,x与y虽然变化,但是y的变化幅度远不及x变化幅度大,所以其乘积必然较小。
在第二个点,x与y变化一致且变化幅度都很大,因此其乘积必然较大,在第三个点,x与y变化相反,其乘积为负值,这类点将使其协方差变小,因此,我们可以认为协方差绝对值大小反映了两个变量变化的一致程度。因此,两个变量相关系数的定义为协方差与变量标准差乘积之比。
参考资料来源:百度百科-协方差
热心网友 时间:2023-07-10 00:02
(1)COV(X,Y)=COV(Y,X);
(2)COV(aX,bY)=abCOV(X,Y),(a,b是常数);
(3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。
由协方差定义,可以看出COV(X,X)=D(X),COV(Y,Y)=D(Y)。
协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入如下概念:
定义
ρXY=COV(X,Y)/√D(X)√D(Y),称为随机变量X和Y的相关系数。
定义
若ρXY=0,则称X与Y不相关。
即ρXY=0的充分必要条件是COV(X,Y)=0,亦即不相关和协方差为零是等价的。
定理
设ρXY是随机变量X和Y的相关系数,则有
(1)∣ρXY∣≤1;
(2)∣ρXY∣=1充分必要条件为P{Y=aX+b}=1,(a,b为常数,a≠0)
定义
设X和Y是随机变量,若E(X^k),k=1,2,...存在,则称它为X的k阶原点矩,简称k阶矩。
若E{[X-E(X)]^k},k=1,2,...存在,则称它为X的k阶中心矩。
若E(X^kY^l),k、l=1,2,...存在,则称它为X和Y的k+l阶混合原点矩。
若E{[X-E(X)]^k[Y-E(Y)]^l},k、l=1,2,...存在,则称它为X和Y的k+l阶混合中心矩。
显然,X的数学期望E(X)是X的一阶原点矩,方差D(X)是X的二阶中心矩,协方差COV(X,Y)是X和Y的二阶混合中心矩。
热心网友 时间:2023-07-10 00:03
协方差与相关性分析