发布网友 发布时间:2022-05-02 08:15
共2个回答
热心网友 时间:2023-10-13 08:08
工程问题中存在这一组等量关系:工作总量=工作时间×工作效率,用字母表示为I=V*T。了解了这个公式之后,下面用两道例题来进行说明多者合作问题如何解决:
根据题干描述所给条件与各自工作时间有关,可以设工作总量为时间的最小公倍数,进而求出各自的工作效率及其他相关量。
【例1】某项工程,甲工程队单独施工需要30天完成,乙工程队单独施工需要25天完成。甲队单独施工了4天后,改由两队一起施工,期间甲队休息了若干天,最后整个工程共耗时19天完成,问甲队中途休息了几天?
A 1 B 3 C 5 D 7
【答案】选D。
【解析】题干中所给的是甲乙两工程队单独施工完成工作的时间,所以根据我们所给的方法设工作总量为30和25的最小公倍数,即150。则甲每天工作量为5,乙每天工作量为6。乙一共干了19-5=14天,工作量为15×6=90,剩下150-90=60,需要甲干60÷5=12天,故甲队中途休息了19-12=7天,选D。
根据题干描述,所给条件是效率之间的关系,可以设效率的最简比为特值,进而求出工作总量及其他相关量。
【例2】A工程队的效率是B工程队的2倍,某工程交给两队共同完成需要6天。如果两队的工作效率均提高一倍,且B对中途休息了1天,问要保证工程按原来的时间完成,A队中途最多可以休息几天?
A 4 B 3 C 2 D 1
【答案】选A。
【解析】根据题干所给的条件,我们可以得出PA:PB=2:1,所以用所给的方法设B工程队的效率为1,A工程队的效率为2,则总工作量为(1+2)×6=18。按原来的时间完成,B工程队完成了1×2×(6-1)=10的工作量,则A工程队需要工作(18-10)÷(2×2)=2天,所求为6-2=4天,选A。
热心网友 时间:2023-10-13 08:08
根据题干描述所给条件与各自工作时间有关,可以设工作总量为时间的最小公倍数,进而求出各自的工作效率及其他相关量。