发布网友 发布时间:2023-11-15 00:47
共5个回答
热心网友 时间:2024-11-29 00:20
当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
比如f(x,y)=x^2+2xy+y^2,对x求偏导就是f'x=(x^2)'+2y *(x)'=2x+2y。
扩展资料:
偏导数的几何意义:表示固定面上一点的切线斜率。
偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。
高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。
二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。
注意:
f"xy与f"yx的区别在于:前者是先对 x 求偏导,然后将所得的偏导函数再对 y 求偏导;后者是先对 y 求偏导再对 x 求偏导。当 f"xy 与 f"yx 都连续时,求导的结果与先后次序无关。
参考资料来源:百度百科-偏导数
热心网友 时间:2024-11-29 00:21
简单分析一下,答案如图所示
热心网友 时间:2024-11-29 00:21
若求f(x,y)的偏导函数,则先把x当做变量、把y当做常数,然后直接对x求导数即可。引入偏导函数是为了二元或多元函数的导数求解。热心网友 时间:2024-11-29 00:22
求偏导的时候,我们都是热心网友 时间:2024-11-29 00:22
举个例子吧,不懂HI我。