发布网友 发布时间:2022-05-01 14:45
共1个回答
热心网友 时间:2023-08-20 14:10
垂径定理是初中几何圆的内容中的重要定理,常与勾股定理结合求线段的值。在关于“垂直于弦的直径”的题目中,很多情况下不直接给出直径,而只给出直径的一部分,如半径或圆心到弦的距离等,此时要注意灵活运用垂径定理。
垂径定理知二推三意思是如果一条直线具备以下五个性质其中的两个性质,那么这条直线就具备另外三个性质,简称“知二推三”:经过圆心垂直于弦平分弦(非直径)平分弦所对的劣弧平分弦所对的优弧。
推论一:平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧。
推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧。
推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧。
推论四:在同圆或者等圆中,两条平行弦所夹的弧相等。
证明:连接OA、OB分别交⊙O于点A、点B
∵OA、OB是⊙O的半径
∴OA=OB
∴△OAB是等腰三角形
∵AB⊥DC
∴AE=BE,∠AOE=∠BOE(等腰三角形三线合一)
∴弧AD=弧BD,∠AOC=∠BOC
∴弧AC=弧BC