数学怎么学好对数?对数的运算法则10
发布网友
发布时间:2023-10-28 17:02
我来回答
共3个回答
热心网友
时间:2024-01-13 20:53
对数一般是出比较大小的题目多吧,这时把他们换成同底的,这样你就可以很容易的判断了,要想学好对数,首先要预习了,在上课的时候认真听老师讲,把难懂的地方给攻破就行了,祝你成功
1对数的概念
如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.
由定义知:
①负数和零没有对数;
②a>0且a≠1,N>0;
③loga1=0,logaa=1,alogaN=N,logaab=b.
特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.
2对数式与指数式的互化
式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)
3对数的运算性质
如果a>0,a≠1,M>0,N>0,那么
(1)loga(MN)=logaM+logaN.
(2)logaMN=logaM-logaN.
(3)logaMn=nlogaM (n∈R).追问这样就没了?还有比如说2【(log√2)的平方】这怎么写?
热心网友
时间:2024-01-13 20:54
记公式,多做题,自然就记住啦
热心网友
时间:2024-01-13 20:54
定义
1.如果 a^x=N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作 x=log(a) N .其中,a叫做对数的底数,N叫做真数。且a>o,a≠1,N>0
2.将以10为底的对数叫做常用对数(common logarithm),并把log(10) N 记为 lg N.
3.以e为底的对数称为自然对数(natural logarithm),并把log(e) N 记为 ln N.
零没有对数.
在实数范围内,负数无对数。在复数范围内,负数有对数。如:
㏑(-5)=㏑[(-1)*5]=㏑(-1)+㏑5=iπ+㏑5.
而事实上,当θ=(2k+1)π时(k∈Z),e^[(2k+1)πi]+1=0,这样,㏑(-1)的具有周期性的多个值,㏑(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。例如:㏑(-5)=(2k+1)πi+㏑5。
loga1=0,logaa=1
基本性质
如果a>0,且a≠1,M>0,N>0,那么:
1、a^log(a) N=N (对数恒等式)
证:设log(a) N=t,(t∈R)
则有a^t=N
a^(log(a)N)=a^t=N.
即证.
2、log(a) a=1
证:因为a^b=a^b
令t=a^b
所以a^b=t,b=log(a)(t)=log(a)(a^b)
令b=1,则1=log(a)a
3、log(a) (M·N)=log(a) M+log(a) N
公式5
4、log(a) (M÷N)=log(a) M-log(a) N
5、log(a) M^n=nlog(a) M
6、log(a)b*log(b)a=1
7、log(a) b=log (c) b÷log (c) a (换底公式)
基本性质5推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:
由换底公式
log(a^n)(b^m)=ln(b^m)÷ln(a^n)
换底公式的推导:
设e^x=b^m,e^y=a^n
则log(a^n)(b^m)=log(e^y)(e^x)=x÷y
x=ln(b^m),y=ln(a^n)
得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
由基本性质5
log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}
再由换底公式可得
log(a^n)(b^m)=m÷n×[log(a)(b)]